Homework format:

- Write only on one side of the paper.
- Please try if possible to start each new problem on a clean sheet of paper.

Problems:

1. (Collin problem 3.2) Let a generator with internal resistance R_g be connected to a transmission line of length l and having a characteristic impedance Z_o. The line is terminated in a load resistance R_L. Let $\tau = l/v$ be the one way propagation time delay. The generator produces a pulsed waveform $P(t)$, $0 \leq t \leq T$. Show that the voltage across R_L is given by

$$V_L = \frac{Z_o}{Z_o + Z_o}(1 + \Gamma_L)[P(t - \tau) + \Gamma_L \Gamma_g P(t - 3\tau) + \Gamma_L^2 \Gamma_g^2 P(t - 5\tau) + \ldots]$$

2. (Collin problem 3.5) In the circuit illustrated below, the battery is connected at $t = 0$. Find and sketch the voltage across R_L as a function of time. Assume that $R_L = R_g = Z_o = 50 \Omega$, $C = 1 \mu F$, $l = 300$ m, and $v = 3 \times 10^8$. Verify your answers with PSpice if you wish.

3. (Collin problem 3.6) The resistor R_L in the previous problem is replaced by a capacitor $C_L = 1 \mu F$. Find the voltage across C_L during the time interval $1 \mu s \leq t \leq 3 \mu s$. Verify your answers with PSpice if you wish.

4. For the transmission line circuit shown below sketch $v_0(t)$, $v_1(t)$, and $v_2(t)$ versus time given the following parameter values: $v_g(t) = 2u(t)$, $Z_o = Z_g = Z_L = 50$ ohms, $T_1 = i_L/v_p = 1$ ns, $T_2 = i_2/v_p = 2$ ns, and $T_3 = i_3/v_p = 250$ ps. To verify your analytical answer you may wish to use a time domain circuit simulator such as PSpice.
5. (Collin problem 3.12) On a transmission line with $Z_o = 50\Omega$, the voltage at distance $0.4\lambda_o$ from the load is $4 + j2$. The corresponding current is 0.1 A. Determine the normalized load impedance. Note normalized load impedance means Z_L/Z_o.

6. A 10 v source with an impedance of $Z_g = 50\Omega$ is connected to a load impedance $Z_L = 80 + j40$ ohms with a 50 ohm lossless transmission line. Calculate the power delivered to the load if the line is 0.3λ long. What is the power delivered if the line length is increased to 0.6λ? If they are the same explain why.

7. A generator is connected to a transmission line as shown below. Find the voltage as a function of z along the transmission line. Plot the magnitude of the voltage for $l \leq z \leq 0$. Mathcad or MATLAB works well for this problem.