Problems:

1. We have a phase detector with sensitivity $K_p = 1 \text{ v/rad}$ and VCO modulation sensitivity of $K_v = 1 \text{ MHz/v}$. The phase detector has a spurious time constant $\tau_p = 31.8 \text{ ns}$ (-3 dB cutoff frequency of $f_c = 5 \text{ MHz}$) and the VCO has a spurious time constant $\tau_v = 1.59 \text{ } \mu\text{s}$ (-3 dB cutoff frequency of $f_c = 100 \text{ kHz}$). Assume $N = 1$.

 (a) Suppose we wish to construct an approximately first-order loop, i.e., $F(s) = 1$, then what constraints must be imposed on K_{LF} to insure a phase margin of at least 45°. Is this reasonable?

 (b) Construct an approximately second-order loop using

 \[F(s) = \frac{1 + s\tau_2}{s\tau_1} \]

 Choose $\omega_n = 1000 \text{ rad/s}$ and $\zeta = 1$. Find τ_1 and τ_2, and the approximate phase margin, ϕ_m, using straight line Bode analysis. You may use Python or MATLAB if you wish to get a more exact phase margin.

2. The charge-pump PLL has a digital phase detector which typically produces current pulses in response to a phase/frequency error between the inputs to the phase detector. For now we simply assume that in the linear model, the phase error, denoted $i_d(t)$ in the figure below, has gain $K_p \text{ A/rad}$. The loop filter is a transimpedance circuit, that is it converts an input current to an output voltage. A pure gain, denoted K_{LF}, may also be part of the loop filter. As usual the VCO has gain $K_v \text{ MHz/v}$ and a frequency divide by N is likely here as well. The circuit shown below results in either a type II third-order or 4th-order PLL. In practice this configuration is popular in synthesizers and ASIC clock generation subsystems.
2. (continued)

(a) Find the loop filter s-domain transfer function in terms of $C_1, C_2,$ and R_1 (the optional lowpass section omitted). Verify that the closed-loop transfer function, $H_3(s)$ is a 3rd-order type 2 loop. Find an expression for the phase margin.

(b) Find the loop filter s-domain transfer function in terms of C_1, C_2, C_3, R_1 and R_2, including the optional lowpass section. Verify that the closed-loop transfer function, $H_4(s)$ is now a 4th-order type 2 loop. Find an expression for the phase margin.

3. (Egan 6.4) A PLL has a passive lead-lag loop filter as shown below

![Diagram](attachment:Diagram.png)

with $R_1 = 3 \, \text{k\Omega}$, $R_2 = 1 \, \text{k\Omega}$, and $C = 0.16 \, \mu\text{F}$. $K_p = 0.5 \, \text{V/rad}$ and $K_v = 10,000 \, (\text{rad/sec})/\text{V}$. What is the phase error in the locked loop 160 μs after a 0.2 radian input phase step? Show your work.

4. A particular third-order PLL has the following loop filter

$$F(s) = 1 + \frac{a}{s} + \frac{b}{s^2}$$

(a) Construct the Routh array and determine the conditions on absolute BIBO stability.

(b) For $a = 10$ and $b = 5$ find the value of loop gain K for which a pair of poles of the closed-loop system lie on the $j\omega$ axis. What are the pole locations. The Python control package function `rlocus(sys, K)` should be useful here.

5. Using the loop filter of problem 4, suppose the input phase deviation is of the form:

$$\theta(t) = \left[\theta_0 + \Omega_0 t + \frac{1}{2} \Lambda_0 t^2 + \frac{1}{6} \Gamma_0 t^3 \right] u(t)$$

(a) Find the steady-state phase error ϕ_{ss} in terms of the input parameters.

(b) With $\theta_0 = 10^\circ$, $\Omega_0 = 2\pi \times 500 \, \text{rad/s}$, $\Lambda_0 = 2\pi \times 50 \, \text{rad/s}^2$, and $\Gamma_0 = 2\pi \times 5 \, \text{rad/s}^3$, find the loop gain K such that $\phi_{ss} = 1^\circ$ when $a = K/2$ and $b = K/4$.

(c) Construct a nonlinear simulation model for this loop using the techniques described in class, that is extending `synchronization.PLL1`. Apply the loop dynamics of part (b) to study the complete transient response. Check to see that the steady-state phase error is indeed 1°. Assume a sinusoidal phase detector. Note that the analysis of (b) assumes a linear loop. If you have problems with the nonlinear simulation you might at first test with the linear model. Choose $f_s = 1000 \, \text{Hz}$ for the sampling rate.
(d) Using the simulation model of (c) apply just a frequency ramp, \(\Lambda_0 \). Through experimentation find the value of \(\Lambda_0 \) where the loop begins to slip cycles. Since this is a type 3 loop, what should \(\phi_{ss} \) always be?