Set #2

Due Friday September 29, 2017

Problems:

1. We have a phase detector with sensitivity $K_p = 1$ v/rad and VCO modulation sensitivity of $K_v = 1$ MHz/v. The phase detector has a spurious time constant $\tau_p = 31.8$ ns (-3 dB cutoff frequency of $f_c = 5$ MHz) and the VCO has a spurious time constant $\tau_v = 1.59 \mu$s (-3 dB cutoff frequency of $f_c = 100$ kHz. Assume $N = 1$.

 (a) Suppose we wish to construct an approximately first-order loop, i.e., $F(s) = 1$, then what constraints must be imposed on K_{LP} to insure a phase margin of at least 45°. Is this reasonable?

 (b) Construct an approximately second-order loop using

 $$F(s) = \frac{1 + s\tau_2}{s\tau_1}$$

 Choose $\omega_n = 1000$ rad/s and $\zeta = 1$. Find τ_1 and τ_2, and the approximate phase margin, ϕ_m, using straight line Bode analysis. You may use Python or MATLAB if you wish to get a more exact phase margin.

2. The charge-pump PLL has a digital phase detector which typically produces current pulses in response to a phase/frequency error between the inputs to the phase detector. For now we simply assume that in the linear model, the phase error, denoted $i_d(t)$ in the figure below, has gain K_p A/rad. The loop filter is a transimpedance circuit, that is it converts an input current to an output voltage. A pure gain, denoted K_{LF}, may also be part of the loop filter. As usual the VCO has gain K_v MHz/v and a frequency divide by N is likely here as well. The circuit shown below results in either a type II third-order or 4th-order PLL. In practice this configuration is popular in synthesizers and ASIC clock generation subsystems.

![Charge Pump PLL Diagram](image)
2. (continued)
 (a) Find the loop filter \(s \)-domain transfer function in terms of \(C_1, C_2, \) and \(R_1 \) (the optional lowpass section omitted). Verify that the closed-loop transfer function, \(H_3(s) \) is a 3rd-order type 2 loop. Find an expression for the phase margin.
 (b) Find the loop filter \(s \)-domain transfer function in terms of \(C_1, C_2, C_3, R_1 \) and \(R_2 \), including the optional lowpass section. Verify that the closed-loop transfer function, \(H_4(s) \) is now a 4th-order type 2 loop. Find an expression for the phase margin.

3. (Egan 6.4) A PLL has a passive lead-lag loop filter as shown below

\[
\begin{array}{c}
\text{in} \quad u_1(t) \\
\overline{R_1} \\
\overline{R_2} \\
\overline{C} \\
\text{out} \quad u_2(t)
\end{array}
\]

with \(R_1 = 3 \) k\(\Omega \), \(R_2 = 1 \) k\(\Omega \), and \(C = 0.16 \) \(\mu \)F. \(K_p = 0.5 \) V/rad and \(K_v = 10,000 \) (rad/sec)/V. What is the phase error in the locked loop 160 \(\mu \)s after a 0.2 radian input phase step? Show your work.

4. A particular third-order PLL has the following loop filter
 \[F(s) = 1 + \frac{a}{s} + \frac{b}{s^2} \]
 (a) Construct the Routh array and determine the conditions on absolute BIBO stability.
 (b) For \(a = 10 \) and \(b = 5 \) find the value of loop gain \(K \) for which a pair of poles of the closed-loop system lie on the \(j\omega \) axis. What are the pole locations. The Python control package function \(\text{rlocus}(\text{sys},K) \) should be useful here.

5. Using the loop filter of problem 4, suppose the input phase deviation is of the form:
 \[\theta(t) = \left[\theta_0 + \Omega_0 t + \frac{1}{2} \Lambda_0 t^2 + \frac{1}{6} \Gamma_0 t^3 \right] u(t) \]
 (a) Find the steady-state phase error \(\phi_\infty \) in terms of the input parameters.
 (b) With \(\theta_0 = 10^\circ, \Omega_0 = 2\pi \times 500 \) rad/s, \(\Lambda_0 = 2\pi \times 50 \) rad/s\(^2\), and \(\Gamma_0 = 2\pi \times 5 \) rad/s\(^3\), find the loop gain \(K \) such that \(\phi_\infty = 1^\circ \) when \(a = K/2 \) and \(b = K/4 \).
 (c) Construct a nonlinear simulation model for this loop using the techniques described in class, that is extending \texttt{synchonization.PLL1}. Apply the loop dynamics of part (b) to study the complete transient response. Check to see that the steady-state phase error is indeed 1\(^\circ \). Assume a sinusoidal phase detector. Note that the analysis of (b) assumes a linear loop. If you have problems with the nonlinear simulation you might at first test with the linear model. Choose \(f_s = 1000 \) Hz for the sampling rate.
(d) Using the simulation model of (c) apply just a frequency ramp, \(\Lambda_0 \). Through experimentation find the value of \(\Lambda_0 \) where the loop begins to slip cycles. Since this is a type 3 loop, what should \(\phi_{ss} \) always be?