
er

1
Real-time Analysis
and Scheduling
Introduction

To develop and analyze embedded real-time software, TI
includes DSP/BIOS with CCS. The main elements of DSP/BIOS
are:

• A small firmware real-time library

• DSP/BIOS application programming interface (API) for
using real-time library services

– The APIs are modular

• Easy to use tools for configuration, real-time tracing, and
analysis

Features

• All DSP/BIOS objects can be created with the Configuration
Tool, with definitions saved in a file *.cdb

– This tool generates all code required to declare objects
used within the program, including the linker command
file *.cmd and vectors.asm

• Only the API modules used need to be bound into the pro-
gram

Chapt

1

ECE 5655/4655 Real-Time DSP 11–1

Chapter 11 • Real-time Analysis and Scheduling
• A significant portion of the modules are in assembly

• Communication between the target and host is performed
with a background idle loop

– Logging and statistics for BIOS objects are available at run
time without additional programming

– BIOS analysis tools allow real-time monitoring of program
behavior

• Thread types are provided for:

– Hardware interrupts, software interrupts

– Tasks

– Idle functions, periodic functions

• Priorities can be controlled as well as blocking characteristics

• Structures are provided that support communication and syn-
chronization between threads

– Semaphores, mail boxes, and resource locks

• Two I/O models are available:

– Pipes for target/host communication and reading and writ-
ing from threads

– Streams can be used for more complex I/O and to support
device drivers

• The Chip Support Library allows for easier device program-
ming, e.g., register level programming, and is portable across
different DSP platforms
11–2 ECE 5655/4655 Real-Time DSP

The DSP/BIOS API Modules
The DSP/BIOS API Modules

Instrumentation/Real-Time Analysis

LOG Message Log manger
STS Statistics accumulator manager
TRC Trace manager
RTDX Real-Time Data Exchange manager

Thread Types

HWI Hardware interrupt manager
SWI Software interrupt manager
TSK Multitasking manager
IDL Idle function & processing loop manager

Clock and Periodic Functions

CLK System clock manager
PRD Periodic function manger

Chip Support Library

CSL Easier device (register) programming

Comm/Synch between threads

SEM Semaphores manager
MBX Mailboxes manager
LCK Resource lock manager
ECE 5655/4655 Real-Time DSP 11–3

Chapter 11 • Real-time Analysis and Scheduling
BIOS API Modules (cont.)

A Case Study: Audio Player with DTMF1

• An audio DSP application that filters an audio stream is being
enhanced to include a DTMF generator with keypad entry

• Design issues that need to be considered are:

– Do we have enough bandwidth (MIPS)?

– Will one routine conflict with the other?

– How do we create the compound system?

1.This example is taken from TI DSP/BIOS lecture material

Input/Output

PIP Data pipe manager
HST Host input/output manager
SIO Stream I/O manager
DEV Device driver interface

Memory and Low-level Primitives

MEM Memory manager
SYS System services manager
QUE Queue manager
ATM Atomic functions
GBL Global setting manager
11–4 ECE 5655/4655 Real-Time DSP

A Case Study: Audio Player with DTMF
Run them together under main():

A second solution is to use two interrupts under main():

• We need to consider both average and instantaneous CPU
loading

DTMFDTMF

FilterFilter

mainmain
{{
while(1)while(1)
{{

}}
}}

• What if algorithms run at differing rates?
(e.g.: our filter runs ~ 44 KHz and the
DTMF algorithm ~ 8 KHz)

• What if one algorithm overshadows
another, starving it for recognition or
delaying it’s response beyond the limits of
the system?

TI DSPTI DSP

mainmain
{{
while(1);while(1);

}}

Timer1_ISRTimer1_ISR
{{

}}

Timer2_ISRTimer2_ISR
{{

}}
BB

AA

mainmain
{{
while(1);while(1);

}}

Timer1_ISRTimer1_ISR
{{

}}

Timer2_ISRTimer2_ISR
{{

}}
BB

AA AA
runningrunning

idleidle

TimeTime 11 22 33 5544 66 7700

AA
runningrunning

idleidle
AA

runningrunning

idleidle

runningrunning

idleidle

TimeTime 11 22 33 5544 66 7700TimeTime 11 22 33 5544 66 7700 11 22 33 5544 66 7700

BBBB

Only one can run at a time.Only one can run at a time.Only one can run at a time.Only one can run at a time.

Period Compute CPU Usage

Routine A:22 s11 s (50%)

Routine B:125 s33 s (26%)

 76%

μ μ
μ μ
ECE 5655/4655 Real-Time DSP 11–5

Chapter 11 • Real-time Analysis and Scheduling
Interrupt driven state machine

mainmain
{{
if tick>set1if tick>set1
if …if …

else if else if
if …if …

else if ...else if ...

else …else …

......
}}

B (part 1)B (part 1)

AA

B (part 2)B (part 2)

B (part 3)B (part 3)

• To solve this scheduling problem, con-
sider building a state-machine in the
main() routine

– Difficult and tedious to write; Need to
keep track of various execution times
and paths through software

– Difficult to maintain; Code is too
tightly coupled to allow any changes or
updates

– Can be slow and large; Conditional
statements lead to branching operations
and disruptions in normal software
flow

TimeTime 11 22 33 5544 66 7700

BB BB11 BB22 BB33

AA
runningrunning

idleidle
yy11 yy22 yy33 yy44
11–6 ECE 5655/4655 Real-Time DSP

A Case Study: Audio Player with DTMF
• The use of C main() background functions has the problems
of:

– No Guarantee of Concurrency

– Non-deterministic timing

– No Software Preemption

– Ad Hoc Analysis

The DSP/BIOS Solution

• DSP/BIOS allows both hardware (HWIs) and software inter-
rupts (SWIs)

– HWIs implement ‘urgent’ portion of real-time event

– SWIs perform ‘follow-up’ activity

BB

AA

mainmain
{{
return;return;

}}

DSP/BIOSDSP/BIOS

• DSP/BIOS provides scheduling:

– You needn’t build a custom (inflexi-
ble) state-machine for each DSP
design

– Easy to write - Modules written inde-
pendently

– Easy to maintain - Module interac-
tion minimized

– Built-in Scheduling - Managed by
DSP/BIOS
ECE 5655/4655 Real-Time DSP 11–7

Chapter 11 • Real-time Analysis and Scheduling
– SWIs are ‘posted’ to run by HWIs or other SWIs

• The DSP/BIOS scheduler provides both HWI and SWI man-
agement

• HWI features:

– Fast response to interrupts

– Minimal context switching

– High priority for CPU

– Can post SWI

– Danger of missing an interrupt while executing ISR

• SWI features:

– Latency in response time

– Context switch performed

– Selectable priority levels

– Can post another SWI

– Execution managed by scheduler

h/w INT

HWI_enter
critical real-time code
Post s/w interrupt (SWI)
HWI_exit

SWI:

filter code

SWI Pending
11–8 ECE 5655/4655 Real-Time DSP

A Case Study: Audio Player with DTMF
• Typical routines required in an audio CD drive:

• A graphical view of scheduling

Audio CD DriveAudio CD Drive

Spindle SpeedSpindle Speed

Laser PositionLaser Position

ControlControl

Error DecodingError Decoding

FilteringFiltering

Data ProcessingData Processing

Front Panel KeysFront Panel Keys

Rcv/Decode IRRcv/Decode IR

User I/FUser I/F

(p y, y)(p y y)

Audio CD DriveAudio CD Drive

Spindle SpeedSpindle Speed

Laser PositionLaser Position

ControlControl

Error DecodingError Decoding

FilteringFiltering

Data ProcessingData Processing

Front Panel KeysFront Panel Keys

Rcv/Decode IRRcv/Decode IR

User I/FUser I/F

Audio CD DriveAudio CD Drive

Spindle SpeedSpindle Speed

Laser PositionLaser Position

ControlControl

Error DecodingError Decoding

FilteringFiltering

Data ProcessingData Processing

Front Panel KeysFront Panel Keys

Rcv/Decode IRRcv/Decode IR

User I/FUser I/F

Spindle SpeedSpindle Speed

Laser PositionLaser Position

ControlControl

Spindle SpeedSpindle Speed

Laser PositionLaser Position

ControlControl

Error DecodingError Decoding

FilteringFiltering

Data ProcessingData Processing

Error DecodingError Decoding

FilteringFiltering

Data ProcessingData Processing

Front Panel KeysFront Panel Keys

Rcv/Decode IRRcv/Decode IR

User I/FUser I/F

Front Panel KeysFront Panel Keys

Rcv/Decode IRRcv/Decode IR

User I/FUser I/F

(p y, y)(p y y)

HWI 2HWI 2

HWI 1HWI 1

SWI 3SWI 3

SWI 2SWI 2

SWI 1SWI 1

MAINMAIN

IDLEIDLE

SWI_post(swi_name);SWI_post(swi_name);SWI_post(swi_name);

rtnrtnrtnrtn

post2post2post2post2 rtnrtnrtnrtn

int2int2int2int2

post3post3post3post3 rtnrtnrtnrtn

post1post1post1post1 rtnrtnrtnrtn

rtnrtnrtnrtn

rtnrtn

int1int1int1int1
ECE 5655/4655 Real-Time DSP 11–9

Chapter 11 • Real-time Analysis and Scheduling
• Another graphical example showing tasks (TSK) which was
added in DSP/BIOS II, and included in CCS 2

Getting Started with DSP/BIOS

• To get started with DSP/BIOS we will consider the instru-
mentation/real-time analysis module, which in particular
includes

– LOG, the message log manger

– STS, the statistics accumulator manager

•

HWI 1HWI 1

HWI 2HWI 2

SWI 1SWI 1

TASK2TASK2

TASK1TASK1

MAINMAIN

IDLEIDLE

rtnrtnrtnrtn

pendpendpendpend

rtnrtnrtnrtn

int2int2int2int2 int1int1int1int1

rtnrtnrtnrtncreate2 create2 create2 create2

create1create1create1create1

postS1postS1postS1postS1 kill1kill1kill1kill1

rtnrtnrtnrtn

kill2kill2kill2kill2

remove block condition remove block condition remove block condition remove block condition
11–10 ECE 5655/4655 Real-Time DSP

	Real-time Analysis and Scheduling
	Introduction
	Features
	The DSP/BIOS API Modules
	A Case Study: Audio Player with DTMF
	Run them together under main():
	A second solution is to use two interrupts under main():
	Interrupt driven state machine
	The DSP/BIOS Solution
	Getting Started with DSP/BIOS

