Chapter

Real-time Analysis 11
and Scheduling

Introduction

To develop and analyze embedded real-time software, TI
includes DSP/BIOS with CCS. The main elements of DSP/BIOS
are:

e A small firmware real-time library

 DSP/BIOS application programming interface (API) for
using real-time library services

— The APIs are modular

e Easy to use tools for configuration, real-time tracing, and
analysis

Features

e All DSP/BIOS objects can be created with the Configuration
Tool, with definitions saved in a file * . cdb

— This tool generates all code required to declare objects
used within the program, including the linker command
file * . cmd and vectors.asm

* Only the API modules used need to be bound into the pro-
gram

ECE 5655/4655 Real-Time DSP 11-1

Chapter 11 « Real-time Analysis and Scheduling

A significant portion of the modules are in assembly

Communication between the target and host is performed
with a background idle loop

— Logging and statistics for BIOS objects are available at run
time without additional programming

— BIOS analysis tools allow real-time monitoring of program
behavior

Thread types are provided for:

— Hardware interrupts, software interrupts

— Tasks

— Idle functions, periodic functions

Priorities can be controlled as well as blocking characteristics

Structures are provided that support communication and syn-
chronization between threads

— Semaphores, mail boxes, and resource locks
Two I/0 models are available:

— Pipes for target/host communication and reading and writ-
ing from threads

— Streams can be used for more complex I/O and to support
device drivers

The Chip Support Library allows for easier device program-
ming, e.g., register level programming, and is portable across
different DSP platforms

11-2

ECE 5655/4655 Real-Time DSP

The DSP/BIOS API Modules

The DSP/BIOS API Modules

Instrumentation/Real-Time Analysis

LOG | Message Log manger

STS | Statistics accumulator manager
TRC | Trace manager

RTDX| Real-Time Data Exchange manager

Thread Types

HWI | Hardware interrupt manager

SWI | Software interrupt manager

TSK | Multitasking manager

IDL ldle function & processing loop manager

Clock and Periodic Functions

CLK | System clock manager
PRD | Periodic function manger

Chip Support Library

CSL | Easier device (register) programming

Comm/Synch between threads

SEM | Semaphores manager
MBX | Mailboxes manager
LCK | Resource lock manager

ECE 5655/4655 Real-Time DSP 11-3

Chapter 11 « Real-time Analysis and Scheduling

BIOS API Modules (cont.)

Input/Output

PIP Data pipe manager

HST | Host input/output manager
SIO | Stream |/O manager
DEV | Device driver interface
Memory and Low-level Primitives
MEM | Memory manager

SYS | System services manager
QUE | Queue manager

ATM | Atomic functions

GBL | Global setting manager

A Case Study: Audio Player with DTMF!

e An audio DSP application that filters an audio stream is being
enhanced to include a DTMF generator with keypad entry

e Design issues that need to be considered are:
— Do we have enough bandwidth (MIPS)?

— WiI1ll one routine conflict with the other?

— How do we create the compound system?

1. This example is taken from TT DSP/BIOS lecture material

11-4

ECE 5655/4655 Real-Time DSP

A Case Study: Audio Player with DTMF

Run them together under main () :

main

{
while(1)
{

Filter

DTMF

}

}

 What if algorithms run at differing rates?
(e.g.: our filter runs ~ 44 KHz and the
DTMF algorithm ~ 8 KHz)

e What if one algorithm overshadows
another, starving it for recognition or
delaying it’s response beyond the limits of
the system?

A second solution is to use two interrupts under main () :

Period Compute CPU Usage

main
{
while(1);
}
Timer1_ISR
{
A
}
Timer2_ISR
{
B
}
Tl DSP

Routine A:22 usll1 us (50%)
Routine B:125 ws33 us (26%)
76%
running // —_ \\ [r—
A | '/ \‘
idle '\ p
\ /
B Sl IR

Only one can run at a time.

 We need to consider both average and instantaneous CPU

loading

ECE 5655/4655 Real-Time DSP 11-5

Chapter 11 « Real-time Analysis and Scheduling

Interrupt driven state machine

main

{
if tick>set1

if ...
A

else if
if ...
B (part 1)
else if ...
B (part 2)
else ...
B (part 3)

running

A

idle

e To solve this scheduling problem, con-
sider building a state-machine in the
main () routine

— Difficult and tedious to write; Need to
keep track of various execution times
and paths through software

— Difficult to maintain; Code 1s too
tightly coupled to allow any changes or
updates

— Can be slow and large; Conditional
statements lead to branching operations
and disruptions in normal software
flow

Y1 Yo Y3 Ya

11-6

ECE 5655/4655 Real-Time DSP

A Case Study: Audio Player with DTMF

e The use of C main() background functions has the problems
of:

— No Guarantee of Concurrency
— Non-deterministic timing

— No Software Preemption

— Ad Hoc Analysis
The DSP/BIOS Solution
Enaln e DSP/BIOS provides scheduling:
return; — You needn’t build a custom (inflexi-
} ble) state-machine for each DSP
%, DSP/BIOS design
— Easy to write - Modules written inde-
A
pendently
B — Easy to maintain - Module interac-

tion minimized
— Built-in Scheduling - Managed by
DSP/BIOS

 DSP/BIOS allows both hardware (HWIs) and software inter-
rupts (SWIs)

— HWIs implement ‘urgent’ portion of real-time event

— SWIs perform ‘follow-up’ activity

ECE 5655/4655 Real-Time DSP 11-7

Chapter 11 « Real-time Analysis and Scheduling

— SWIs are ‘posted’ to run by HWIs or other SWIs
e The DSP/BIOS scheduler provides both HWI and SWI man-

agement
h/w INT
v — SWI Pending
a HWI_enter h v
critical real-time code SWI:
Post s/w interrupt (SWI) filter code
L HWI_exit)

 HWI features:
— Fast response to interrupts
— Minimal context switching
— High priority for CPU
— Can post SWI
— Danger of missing an interrupt while executing ISR
* SWI features:
— Latency in response time
— Context switch performed
— Selectable priority levels
— Can post another SWI

— Execution managed by scheduler

11-8 ECE 5655/4655 Real-Time DSP

A Case Study: Audio Player with DTMF

* Typical routines required in an audio CD drive:

Audio CD Drive

Control

Spindle Speed

Laser Position

Data Processing

Error Decoding

Filtering

User I/F

Front Panel Keys

Rcv/Decode IR

* A graphical view of scheduling

HWI 2

HWI 1

post2 rtn
EELCEEC |

post3 rtn
v |4

SWI post (swi_name) ;

SWi 3

SWI 2

SWI 1

post1

rtn

\
[[TTTY

4
[11 [

int2

rtn

IS T T T T T I11

£/
[[TTTTTTTe

rtn

4
[TTTTTTTTTTTTTe

rtn
MAIN

IDLE (I

\
HEDEEEEEEEEEEEEEEEEE NN EEEEEEEEEEEEEE

ECE 5655/4655 Real-Time DSP

11-9

Chapter 11 « Real-time Analysis and Scheduling

* Another graphical example showing tasks (TSK) which was

added in DSP/BIOS II, and included in CCS 2

HWI 1

remove block conditiqn rtn

create\2 lrtn

HWI 2

[[]€

[[e]¢

SWI 1

rtn
TTT

TASK2

TASK1

create1 pend

kill2

[T T T T TTTTTTTTTTITTTTITITTT]

postS1

kill1

\
[TTTTTTTTTeTTTTTTT I

MAIN ¥

int1

IDLE [T [I11®

\
[T T T T I I T I T T I I I T I TITI T T TIT I]

Getting Started with DSP/BIOS

e To get started with DSP/BIOS we will consider the instru-
mentation/real-time analysis module, which in particular

includes

— LOG, the message log manger

— STS, the statistics accumulator manager

11-10

ECE 5655/4655 Real-Time DSP

	Real-time Analysis and Scheduling
	Introduction
	Features
	The DSP/BIOS API Modules
	A Case Study: Audio Player with DTMF
	Run them together under main():
	A second solution is to use two interrupts under main():
	Interrupt driven state machine
	The DSP/BIOS Solution
	Getting Started with DSP/BIOS

