RF Receiver
Hardware Design

Bill Sward

bsward@rtlogic.com

February 18, 2011
Topics

• Customer Requirements
• Communication link environment
• Performance Parameters/Metrics
• Frequency Conversion Architectures
• I/Q Demodulation Architectures
• Example Design Based on a Real Product
• Receiver RF Modeling
• My career history
Customer Requirements

• Who was my customer?
 – My employer
 – Various groups with similar but slightly different applications

• Requirements
 – 70 MHz input center frequency
 – Industry standard cPCI form factor
 – Detailed RF requirements coming up

• Internally generated requirements are often vague

• Ill-defined requirements can easily lead to schedule slips and cost over-runs
• Wireless (RF) link between transmitter and receiver
• Input signal to receiver may vary in amplitude
• Interference may be present
• RF spectrum is crowded (adjacent channel interference)
• Desire low Bit Error Rate (BER) at high data rates
• Design goal: Optimize receiver performance under variable conditions (in this presentation under variable signal amplitude only)
• Receiver Performance Dependent on Signal Strength

• Small signal performance generally dictated by AWGN (w/o fading)
 – Noise Bandwidth
 – Noise Figure
 – Signal-to-Noise ratio (SNR), Signal-to-Noise Density ratio (S/No)
 – Eb/No

• Large signal performance generally dictated by receiver linearity
 – Intermodulation Distortion
 • Spectral spreading, re-growth, etc
 • 3rd Order Intercept Point
 – Harmonic Distortion
 – Amplitude Compression

• Receiver design can be optimized for
 – Small signal performance
 – Large signal performance
 – A combination/balance of small and large signal performance
Frequency Conversion Architectures

Super heterodyne

1st LO frequency = RF - IF (or RF + IF)

2nd LO frequency = IF frequency

Direct Conversion

LO frequency = RF frequency
Frequency Conversion Trade-offs

• Super heterodyne
 – High performance, high cost
 – Distributed frequency plan allows distributed filtering and gain

• Direct Conversion Benefits
 – Fewer parts
 • Image reject filter
 • IF bandpass filter
 • 1st Local Oscillator
 – Smaller and lower cost

• Direct Conversion Issues
 – DC offsets
 – LO leakage
 – 2nd order distortion
 – 1/f noise (flicker noise)
Direct Conversion Issues

• DC Offsets in baseband I/Q signals
 – Caused by LO self-mixing and baseband circuitry
 – Offset amplitude varies with RF frequency and antenna effects
 – Mitigated by compensation/calibration, near-zero IF, AC coupling, etc

• LO Leakage Out of Receiver
 – LO is at RF frequency and cannot be filtered
 – Leakage amplitude dependent upon isolation of components

• 2nd Order Distortion with two input signals at frequencies f_1 and f_2
 – 2nd order distortion is at $|f_1-f_2|$ and f_1+f_2
 – $|f_1 - f_2|$ problematic when f_1 and f_2 are in-band and close in frequency
 • Distortion is near DC and interferes with desired I/Q baseband signals

• 1/f Noise (flicker noise) is intrinsic in semiconductor devices
 – Coupling of 1/f noise with desired signal is predominately at baseband
 – Direct conversion has smaller signals (and more gain) at baseband
 – SNR degradation is more pronounced as compared with super heterodyne
I/Q Demodulation Architectures

Analog I/Q Demodulation

Digital (DSP) I/Q Demodulation
I/Q Demodulation Trade-offs

• Digital I/Q Demodulation
 – I/Q gains are exactly equal and phase is exactly quadrature
 – Requires A/D sample rate at least 2x modulation bandwidth

• Analog I/Q Demodulation
 – I/Q gain and phase are not perfectly balanced
 – Imbalances create distortion
 – Requires A/D sample rate at least 1x modulation bandwidth

• For a given A/D converter capability, analog I/Q demodulation provides twice the modulation bandwidth at the expense of more hardware and higher distortion
IF Receiver Example: Requirements

- Input frequency is 70 MHz
- Modulation bandwidth up to 40 MHz (various data rates & modulation)
- Input signal amplitude -75 dBm to 0 dBm
- Input noise floor -150 dBm/Hz to -135 dBm/Hz (Not just thermal noise)
- Intermodulation distortion
 - -60 dBc for signal inputs up to -10 dBm
 - -50 dBc for signal inputs from -10 dBm to 0 dBm
Commercial A/D Converter technology provides 12 bits at 210 Msps
- Meets Nyquist criteria of greater than 2x the modulation BW (80 MHz)
- Digital I/Q demodulation architecture avoids imbalance distortion issues
- Over-sampling provides at least 5 samples per bit for high performance data demodulation and bit synchronization

75 dB of signal amplitude variation requires analog gain control

Gain required for adequate signal amplitude into A/D converter

Consider input noise floor
- 40 MHz noise bandwidth => 76 dB-Hz
- Input noise density of -135 dBm/Hz is -59 dBm (over 40 MHz)
- Receiver automatic gain control (AGC) operates on S+N
- Input SNR can be negative
IF Receiver Example: Critical Trade-offs

- Receiver must provide the necessary gain to bring the input signal to the optimum level into the A/D converter

- Too little gain => inadequate signal level into A/D
 - Instantaneous dynamic range limited by A/D quantization noise floor

- Too much gain => excessive signal level into A/D
 - With low SNRs, the A/D can saturate on noise “spikes”
 - Increased intermodulation distortion

- Optimum level into A/D dependent upon SNR, noise statistics, signal characteristics, and number of bits in the A/D
 - For small SNRs, Gaussian noise, sinewave input, and 12 bit A/Ds, the optimum amplitude into the A/D is about 14 dB below A/D fullscale*

IF Receiver Example: Design Approach

- IF Receiver product for a multitude of satellite communication applications
- Generic architecture consists of filters, amplifiers, variable attenuators, etc

![IF Receiver Diagram]

- Model the cascade of receiver components to predict performance
- Follow signal, noise, and distortion levels through each component in the receiver chain
- Calculate receiver performance metrics such as noise figure and input intercept point
• Noise Figure describes the SNR degradation caused by noise generated internally within the receiver

• Cascaded Noise Figure
 \[NF_{\text{total}} = NF_1 + \frac{(NF_2 - 1)}{G_1} + \frac{(NF_3 - 1)}{(G_1 \times G_2)} + \ldots \]

• In this example design, the system noise performance is dictated by external noise floor over most of the input signal amplitude range

• Third Order Intercept Point quantifies the intermodulation distortion created within the receiver

• Cascaded Third Order Input Intercept Point
 \[IIP3_{\text{total}} = \frac{1}{\left\{ \frac{1}{IP3_1} + \frac{G_1}{IP3_2} + \frac{(G_1 \times G_2)}{IP3_3} \right\}} + \ldots \]
IF Receiver Example: Cascaded Model

<table>
<thead>
<tr>
<th>Component</th>
<th>Gain (dB)</th>
<th>NF (dB)</th>
<th>Power Point</th>
<th>ICP</th>
<th>3rd Order</th>
<th>Gain (dB)</th>
<th>NF (dB)</th>
<th>Power Point</th>
<th>ICP</th>
<th>3rd Order</th>
<th>Noise (dBm)</th>
<th>Bandwidth (MHz)</th>
<th>Noise Pwr (dBm)</th>
<th>SNR (dB)</th>
<th>SFDR (dB)</th>
<th>Linear</th>
<th>Linear</th>
<th>IIP3 (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowpass filter</td>
<td>-2.7</td>
<td>2.7</td>
<td>-75</td>
<td>75</td>
<td>-77.7</td>
<td>72.3</td>
<td>-152.7</td>
<td>0.54</td>
<td>3.16E+07</td>
<td>-37.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed Atten</td>
<td>-2</td>
<td>2</td>
<td>-77.7</td>
<td>75</td>
<td>-79.7</td>
<td>-154.6</td>
<td>40</td>
<td>-78.6</td>
<td>-1.1</td>
<td>0.63</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step Atten</td>
<td>-3</td>
<td>3</td>
<td>-79.7</td>
<td>22</td>
<td>-82.7</td>
<td>19</td>
<td>34</td>
<td>-157.5</td>
<td>40</td>
<td>-81.5</td>
<td>-1.2</td>
<td>233.4</td>
<td>0.50</td>
<td>5.01E+03</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed Atten</td>
<td>-2</td>
<td>2</td>
<td>-82.7</td>
<td>37</td>
<td>-84.7</td>
<td>-159.4</td>
<td>40</td>
<td>-83.3</td>
<td>-1.4</td>
<td>0.63</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplifier</td>
<td>15.4</td>
<td>3.7</td>
<td>-84.7</td>
<td>-4.9</td>
<td>-69.3</td>
<td>10.5</td>
<td>25</td>
<td>-143.6</td>
<td>40</td>
<td>-67.6</td>
<td>-1.7</td>
<td>188.6</td>
<td>34.67</td>
<td>9.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed Atten</td>
<td>-3</td>
<td>3</td>
<td>-69.3</td>
<td>-72.3</td>
<td>-72.3</td>
<td>-146.6</td>
<td>40</td>
<td>-70.6</td>
<td>-1.7</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>-72.3</td>
<td>-72.3</td>
<td>-72.3</td>
<td>-146.6</td>
<td>40</td>
<td>-70.6</td>
<td>-1.7</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplifier</td>
<td>28</td>
<td>2.5</td>
<td>-72.3</td>
<td>-7</td>
<td>-44.3</td>
<td>21</td>
<td>31</td>
<td>-194.9</td>
<td>-118.6</td>
<td>40</td>
<td>-42.6</td>
<td>-1.7</td>
<td>150.6</td>
<td>630.96</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed Atten</td>
<td>-3</td>
<td>3</td>
<td>-44.3</td>
<td>-47.3</td>
<td>-47.3</td>
<td>-121.6</td>
<td>40</td>
<td>-45.6</td>
<td>-1.7</td>
<td>0.50</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformer</td>
<td>-0.5</td>
<td>0.5</td>
<td>-47.3</td>
<td>-47.8</td>
<td>-47.8</td>
<td>-122.1</td>
<td>40</td>
<td>-46.1</td>
<td>-1.7</td>
<td>0.89</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable Gain A</td>
<td>32</td>
<td>7</td>
<td>-47.8</td>
<td>-10.5</td>
<td>-15.8</td>
<td>21.5</td>
<td>-90.4</td>
<td>-90.1</td>
<td>-1.7</td>
<td>74.6</td>
<td>1584.89</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADFS: 1.536 V assumed to be pk-pk
14 dB backoff: 0.199526 linear
Cascaded NF: 13.54 dB set point: 0.306472 V assumed to be pk-pk

Output power: -15.80 dBm

ADC input load impedance: 200.0 ohms
S+N: -11.84 dBm
1st stage NF: 13.4 dB
2nd stage NF: 5.50 dB

I/Q voltage: 0.073 Vrms
S+N voltage: 0.114 Vrms
1st stage NF: 21.9 linear
1st stage gain: 5.70 dB
2nd stage NF: 3.55 linear
2nd stage contribution: 6.86E-01 linear

Output SNR: -1.7 dB
1st stage gain: 3.72 linear

Total gain: 59.2 dB

Total SFDR: 74.6 dB based only on 3rd order distortion
cascaded: 2.257E+01 linear 3rd stage NF: 10.50 dB
IF Receiver Example: Modeled Eb/No Performance

Output Eb/No vs. Input Signal Power
(input noise floor is -150 dBm/Hz)

-90 -80 -70 -60 -50 -40 -30 -20 -10 0

0 10 20 30 40 50 60 70 80

Eb/No (dB)

Input Power (dBm)

100 kbps 2 Mbps 10 Mbps 35 Mbps
IF Receiver Example: Modeled Eb/No Performance (con't)

Output Eb/No vs. Input Signal Power
(input noise floor is -135 dBm/Hz)
IF Receiver Example: Modeled 3rd Order Intermodulation Distortion Performance

![3rd Order IMD vs. Input Signal Power Graph]
IF Receiver Example: Modeled Noise Figure Performance

Noise Figure vs. Input Signal Power

- Noise figure vs. input signal power graph with noise floors at -135 dBm/Hz and -150 dBm/Hz.
IF Receiver Example: Modeled SNR Degradation Performance

Noise floor = -135 dBm/Hz
Noise floor = -150 dBm/Hz
Questions
My Engineering Career

• BSEE 1983 from Iowa State University
 – Analog and communications focus

• 1982 to 1989: Hughes Aircraft Company, Los Angeles
 – Radar systems engineer primarily for RF and IF receivers

• 1989 to 1990: Research & Development Laboratories, Los Angeles
 – Radar and RF engineer for receiver design

• 1990 to 1994: NAVSYS, Monument, CO
 – GPS and RF engineer, project management, engineering management

• 1994 to 1996: XEL Communications, Aurora, CO
 – CATV data modem design

• 1996 to 2001: Mission Research Corporation, Colorado Springs
 – Fading channel emulators, military communications and radar systems, mgmt

• 2001 to 2003: Xircom/Intel, Colorado Springs
 – Commercial wireless modems, mgmt

• 2003 to present: RT Logic, Colorado Springs
 – Satellite communications, RF data links, radar, mgmt

MSEE from UCCS
1991-1996

MBA classes from UCCS
2009-present
Career Dialog

• What’s it like to be an engineer?

• Do I really need to remember all that calculus stuff?

• What career paths are available?

• What’s important and what’s not?
 – Salary
 – Challenge
 – Title
 – Writing
 – Math
 – Speaking
 – Company culture
 – Co-workers
 – Type of work

• In hindsight, would I do anything different?

• What if I don’t like engineering once I start working?

• How do I get, and hold, an engineering job?