Case Study

Reasons for Doing Thorough Failure Analysis

Brian Freese
2/19/2010
Biography

ASIC Engineer with Storage Technology and Sun Microsystems

30 years in all phases of ASIC business

B.S. Physics, South Dakota School of Mines and Technology

MSEE, University of Colorado, Boulder
Agenda

- Introductory Remarks
- Scenario
- Outcome
- Lessons Learned
- Q & A
What is Failure Analysis?

- Identifying *and* solving problems with all prototype or production products

- Driving all issues to resolution, including documentation (for Manufacturing, ISO)

- Problems can occur *anywhere* and lead *anywhere*: design, manufacturing, component procurement, contractors, etc.
Why do Failure Analysis?
Part 1

- Streamline the manufacturing process
- Reduce product manufacturing costs
- Improve product quality and reliability
- Provide closure to Design Engineering
- Maintain revenue stream (we get to keep our jobs!!)
Why do Failure Analysis?
Part 2

- Ensures manufacturing repeatability
- Provides valuable design, manufacturing lessons
- Prevents (in theory) making the same mistake twice
Scenario

- A data storage company is procuring custom ASICs for a flagship tape drive product.
- The ASIC processes analog data from magnetic tape.
- The tape drive manufacturing process is stable.
- PPMs are monitored, driven to closure.
Who is Responsible for FA?

- Engineering support groups monitor PPMs, inputs from field or sub contract manufacturers
- Component, subassembly responsibilities
- Engineering support coordinates FA work.
The Problem

- Out of spec PPMs for a printed circuit board
- Failures are *repeatable*.
- In-circuit test indicates ASIC is at fault.
- Problem was (thankfully) caught at Incoming Inspection, *not* in the field.
Engineering Support’s Response

- Failing boards are retested, results documented.
- ASIC is in a BGA.
- It is *carefully* removed from the board, not a trivial process.
ASIC Tests

- ASIC tests show no malfunctions

- ASIC - mixed signal part, extensive signal conditioning, programmable filtering.

- ASICs are replaced on boards; boards still fail
What do we do now?

- Design Engineering contacted
- Possible design margining problem?
- Design cycle pressures may have precluded Monte Carlo, worst case simulation analyses.
- Check board before contacting chip supplier.
Board Check
Part 1

- Microscopic (and X-ray) analyses to look for:
 - Solder joint problems
 - Board cracks
 - Opens or shorts (e.g. whiskering)

- Check all circuit paths related to the ASIC

- The ASIC has AC-coupled, differential amplifier inputs
Board Check
Part 2

- All circuit board traces to the ASIC were checked – no problems.
- Board components in ASIC circuit path were removed and tested.
- One of the AC coupled SMT capacitors was shorted.
All failed boards were tested.

One or both input capacitors were shorted.

SMT caps cost less than 1 cent.

ASIC costs around $12 dollars.
Corrective Actions

- Component engineer switches to alternate supplier. (Always have multiple sources!)

- Failed parts sent to manufacturer for FA, follow up report

- Capacitor failure was due to bad batch of dielectric material.

- Capacitor manufacturer had to issue a recall.
Outcome

- Alternate supplier’s parts were used, product manufacturing resumed with minimal delays.

- Full FA report provided to prove root cause.

- “Corrected” capacitors must be recertified before use.

- Replacement costs borne by supplier
Lessons
Part 1

- Occam’s Razor – look for simple solutions first

- Board-ASIC combination was stable, low likelihood of a design margin error

- Start with board and components related to the part failure.

- Designers must be aware of all circuit performance and manufacturing aspects.
Lessons
Part 2

The problem is not solved until:

- Root cause is proven
- *Proven* fix(s) are found
- Fix(s) are implemented and,
- Proven to solve the problem at the *manufacturing* level
Last Comments

- Not all problems are solved this easily.

- Far East manufacturers sometimes deny access to their manufacturing staff.

- There may be no documented closure.

- Risk of recurrence.

- Economic factors prevent switching suppliers.
Q & A
Acknowledgements

My thanks to Dr. Wickert

for the opportunity to

speak to you