ECE 4680 DSP Laboratory 6: Signal Generation Using DDS

Due Date: ________________

Introduction and Background

Signal processing systems, in particular communications systems, need to generate signals in addition to processing them. Text Chapter 5, entitled Signal Generation, drills down on this important topic. Signal generation requirements might be for sinusoids, pulse type signals, pseudo-random data, or noise waveforms, to name a few. In this lab the focus will be on the generation of sinusoidal signals using what is known as direct digital synthesis (DDS) [1]–[3]. Two applications, audio special effects and a communications receiver for frequency modulation (FM) are described later in this document. The audio special effects application makes of the time varying delay introduced in Lab 4. The FM receiver implements complex frequency translation of the input signal in order for demodulation to be performed at complex baseband.

Direct Digital Synthesis

In the introduction and setup of the FM4 you had a chance to play with wavetable lookup as a simple means of signal generation. Two other means of sinusoidal signal generation are: (1) direct digital synthesizer (DDS) and (2) the digital resonator. The digital resonator uses an IIR filter with poles located on the unit circle that is excited by an impulse to start the oscillation. The focus here is the DDS technique, as it is quite popular in communications transmitter and receivers and audio special effects.

The Voltage Controlled Oscillator as Motivation

The DDS is motivated by the voltage controlled oscillator (VCO), which is used as sinusoidal signal generator in analog electronics [1]. A VCO has output frequency, \(f(t) \), that is proportional to the input control voltage, \(e(t) \) plus the quiescent frequency \(f_0 \). Working from the VCO block diagram of Figure 1, you have

\[
\phi(t) = 2\pi K_v \int_{-\infty}^{t} e(\lambda) d\lambda
\]

(1)

\[e(t) \rightarrow \text{VCO} \rightarrow x(t) = A \cos \left(2\pi f_0 t + \phi(t) \right) \]

\[\theta(t) \]

Figure 1: VCO high level block diagram.
with VCO gain constant K_v having units of Hz/v. The total phase of the VCO output, $\theta(t)$, is related to the instantaneous frequency of the VCO as

$$f_i(t) = \frac{1}{2\pi} \frac{d}{dt} \theta(t) = f_0 + K_v e(t) \quad (2)$$

where f_0 is the VCO quiescent frequency. From the above equations you can now draw the behavioral level block diagram of Figure 2.

Note when $e(t) = 0$ the instantaneous frequency becomes $f_i(t) = f_0$ Hz.

Converting the VCO Model to the Discrete-Time Domain

In the discrete-time domain consider a sampling rate of $f_s = 1/T$, with T being the sampling period or spacing. You have

$$x[n] = x(nT) = \cos[2\pi f_0 nT + \phi(nT)], \quad (3)$$

where the discrete-time phase is $\phi[n] = \phi(nT)$. The integrator is replaced by an accumulator when you consider approximating the integral via rectangular areas. This is shown in Figure 3.

With the integration above understanding you can write

$$\phi[n] = \phi(nT) = 2\pi K_v T \sum_{k=-\infty}^{n-1} e(nT)$$

$$= 2\pi K_v T \sum_{k=-\infty}^{n-1} e[n] = k_v e[n-1] + \phi[n-1] \quad (4)$$

where $k_v = 2\pi K_v T$ rad/sample. The recursive form for $\phi[n]$ in the last line of (4) motivates the
discrete-time form of the VCO shown in Figure 4.

![Discrete-time VCO block diagram](image)

Figure 4: Discrete-time VCO block diagram.

As a fixed frequency generator let $e[n] = 0$ and set f_0 or $\omega_0 = 2\pi f_0 / f_s$ to the desired quiescent frequency $0 < f_0 < f_s / 2$. This behavior is similar to the analog VCO. Note the discrete-time VCO is sometimes referred to as a *numerically controlled oscillator* (NCO), but more typically is the idealized mathematical form of the DDS. The output equation for the NCO/DDS when $e[n] = 0$ is

$$ x[n] = \cos(2\pi f_0 / f_s \cdot n) = \cos(\omega_0 n) $$

where you can also write that

$$ \theta[n] = \omega_0 n $$

$$ \theta[n + 1] = \omega_0 (n + 1) = \omega_0 n + \omega_0 = \theta[n] + \omega_0 $$

C-Code Implementation Using Floats

On the FM4 a near ideal DDS implementation is possible since floating-point arithmetic is available via the `<math.h>` library (included automatically in the ZIP file sample projects). Specifically what this means is that on-the-fly calculation of sine and cosine using `sinf()` and `cosf()` is possible. The code snippets below are for a DDS built in portable C (here using GCC on Windows 10 bash shell):

```c
// Portable DDS Prototype
#include <stdio.h>
#include <math.h>
//define ARM compatible data type
typed float float32_t;
typed double float64_t;
typed int int32_t;
#define NSAMPLES 10000
#define f0 14000  // Hz

int main(void)
{
    FILE *fp;
    int n;
    float32_t x[NSAMPLES];
    ```
First off from the above code snippet you see that the DDS quiescent frequency is determined by
choosing

\[\omega_0 = 2\pi \cdot \frac{f_0}{f_s}, 0 < f_0 < f_s/2 \] \hspace{1cm} (7)

A serious drawback of the on-the-fly calculation is the time it takes to execute a trig function call. On the FM4 with full optimization, a call to `cosf()` takes about 0.73\,\mu\text{s}, while a call to `arm_cos_f32()` takes about 0.41\,\mu\text{s}. Both measured using GPIO timing. Recall the cycle time is 1/200 MHz or 5 ns (0.0005 \,\mu\text{s}).

Practical Implementation Considerations

Most DDS implementations, in particular ASIC and FPGA forms, utilize fixed-point arithmetic. Finite precision impacts include:

- Bit width of the accumulator; controls the ultimate frequency precision or smallest frequency step size via \(\Delta f = f_s/2^{B_{\text{acc}}} \) Hz, where \(f_s \) is the sampling rate and \(B_{\text{acc}} \) is the accumulator bit width.
- The size of the sine/cosine look-up-table (LUT) is \(2^{B_w} \), where \(B_w \) is the bit width of the
table address, typically reduced from the accumulator bit width, that is \(B_w < B_{\text{acc}} \)

- The storage precision or bit width of the sine/cosine values is \(B_{\text{cos}} \)

A modified DDS block diagram, that includes finite precision attributes is shown in Figure 5. For an accumulator input step size \(\Delta N \) (an integer value), the DDS output frequency is

\[
f_0 = \frac{f_s}{2^{B_{\text{acc}}}} \cdot \Delta N \text{ Hz} \tag{8}
\]

or from a design standpoint

\[
\Delta N = \frac{f_0 \cdot 2^{B_{\text{acc}}}}{f_s}. \tag{9}
\]

Note in [3] and elsewhere \(f_s \) is referred to as the DDS clock frequency, \(f_{\text{clk}} \).

A Python simulation of this system is contained in the module \texttt{dds.py} via the function \texttt{DDS()}:

```python
def DDS(f0,fs,N_samps,Bcos,Bacc,Bw):
    x,a_out,n = DDS(f0,fs,N_samps,Bcos,Bacc,Bw)
    """
    Inputs
    f0 = desired output frequency
    fs = sampling frequency
    N_samps = number of samples to simulate
    Bcos = bit width of cos/sin values
    Bacc = bit width of the accumulator
    Bw = bit width of the LUT address
    Outputs
    x = output signal
    a_out = accumulator normalized to a [0,1) float value
    n = time index
    ""
    n = np.arange(N_samps-1)
    x = np.zeros(len(n))
    a_out = np.zeros(len(n))
    a = 0
    w = 0
    theta = 0
    for k in range(len(n)):
```

Mark Wickert November 2016

The Jupyter notebook ‘DDS and Applications.ipynb’, found in the python folder of the Lab6 project ZIP, contains among other things the examples described below. To see the DDS simulation in action suppose $f_s = 48$ kHz and consider 32 bits (very large) for all of the bit widths and compare that to the case $B_{acc} = 32, B_w = 16$ and $B_{cos} = 16$ in Figure 6.

![Bit Widths: $B_{cos} = 32$, $B_{acc} = 32$, $B_w = 32$](image1)

![Bit Widths: $B_{cos} = 16$, $B_{acc} = 32$, $B_w = 16$](image2)

Figure 6: DDS output at 14 kHz with $f_s = 48$ kHz and bit widths (a) $B_{acc} = B_w = B_{cos} = 32$, and (b) $B_{acc} = 32, B_w = 16$, and $B_{cos} = 16$.

Direct Digital Synthesis
The idealized result (32 bits everywhere) is shown in Figure 6a along with reduced bit width results in Figure 6b. As the bit width is reduced spurious outputs (spurs) start to appear. This is a result of the finite precision arithmetic involved in the design. Spurious outputs are one of the main issues with the DDS. In the example above you see that with enough precision in the algorithm, spurious outputs can be down 100 dB or more from the desired output.

Further discussion of DDS spurs can be found in the appendix of this document. The 32-bit accumulator output for $f_0 = 14$ kHz and $f_s = 48$ kHz is shown in Figure 7. As expected the waveform

```matlab
x32_32_32, a_out, n = dds.DDS(14,48.0,10000,32,32,32)
plot(n[:50],a_out[:50])
plot(n[:50],a_out[:50],'r')
title(r'Bit Widths: $B_{\cos} = 32$, $B_{acc} = 32$, $B_w = 32$')
ylabel(r'Normalized Phase Accumulator')
xlabel(r'Sample Index $n$')
grid();
```

![Figure 7](image.png)

Figure 7: DDS accumulator output for $f_0 = 14$ kHz with $f_s = 48$ kHz and bit widths $B_{acc} = B_w = B_{\cos} = 32$.

is a sampled ramp as the phase of the cosine is advancing linearly with the sample index.

The primary focus of this lab is to study a `float32_t` DDS implementation, see

What to Expect with an FM4 Implementation

When you implement the DDS using `float32_t` (follow the C example above) on the FM4 you
will first need to scale the float \texttt{cosf()} value to some integer value inside the 16-bit signed integer range, e.g., \texttt{15000*cosf() \ works \ well, \ assuming \ you \ keep \ the \ GUI \ slider \ interface \ in \ place, \ e.g.,}

\[xL = (\text{int16}_t) (FM4_GUI.P_vals[0] \ast 15000 \ast \text{arm}_\cos_f32(\text{angle})) ; \]

Upon running the code and setting the frequency \(f_0 \) to 5 KHz you should obtain results similar to those shown in Figure 8. In this case you see a combination of harmonic outputs relative to the 5 kHz signal and non-harmonic spurs. The noise floor is mostly due to the Analog Discovery itself. Exponential averaging in dB is used to reveal spurs sitting just above the noise floor.

Before moving into actual lab tasks a couple of application examples are introduced to get you prepared for some of the lab problems/exercises coming up.

Applications

DDS application domains explored in this lab are audio special effects and communication receiver complex frequency translation.

Audio Special Effects

Audio special effects is a popular real-time DSP application area. Looking at [4] Chapter 10, you find a Chapter 10 entitled *Guitar Special Effects*. A special effect of interest in this lab is flanging\(^1\), which is formed using a variable length delay line and a sinusoidal waveform generator as

\(^1\) https://en.wikipedia.org/wiki/Flanging.
shown in Figure 9. The sinusoidal generator comes into play by making $\beta[n]$ a cosine signal of the form

$$\beta[n] = \frac{D}{2} \left(1 + \cos\left(\frac{2\pi f_0 n}{f_s}\right)\right) = D_p \left(1 + \cos\left(\frac{2\pi f_0 n}{f_s}\right)\right),$$ \hspace{1cm} (10)$$

where D is the delay line length, f_0 is a low frequency, around 1 Hz or less, and f_s is the sampling rate. The peak delay, $D_p = D/2$, is the quantity controlled in the problem section. The constant $0 \leq \alpha \leq 1$ controls the fraction of the time delayed signal that mixes with the direct signal. Typically a 50/50 mix, which occurs when $\alpha = 0.5$ is the maximum value, but in testing it is nice to be able to turn the direct path off by setting $\alpha = 1.0$. The time varying delay imposes a Doppler frequency shift, that is also time varying itself, on the input signal. When the two signals are mixed together you hear a swooshing sound. If f_0 is too large the Doppler frequency shift makes the effect more like listening to badly tuned instruments. The Wiki page describes other variations of the basic block diagram. The delay generator may also be a triangle, sawtooth, or periodic exponential wave shape. In the lab exercises you will explore varying both D_p and f_0.

Understanding the Doppler Shift and Spectrum

For the special case of a sinusoidal input signal, i.e.,

$$x[n] = A_m \cos\left(\frac{2\pi f_m}{f_s} n\right)$$ \hspace{1cm} (11)$$

where A_m and f_m are the amplitude and analog frequency of the sinusoid respectively. Assuming that the direct path is turned off, $\alpha = 1$, you have

$$y[n] = A_m \cos\left(\frac{2\pi f_m}{f_s} (n - \beta[n])\right)$$

$$= A_m \cos\left(\frac{2\pi f_m}{f_s} n - D_p \left(1 + \cos\left(\frac{2\pi f_0 n}{f_s}\right)\right)\right).$$ \hspace{1cm} (12)$$
A Doppler frequency behavior exists as $\beta[n]$ is a function of time n, thus making it possible for the time axis n to compress or expand. In the discrete-time domain, the first backwards difference is like taking the derivative in the continuous-time domain. Let

$$\psi[n] = \frac{f_m}{f_s} (n - \beta[n])$$

be the total phase of the cosine. The Doppler frequency in Hz/sample is contained within the first backwards difference upon scaling by the sampling frequency

$$\frac{\psi[n] - \psi[n-1]}{2\pi}, f_s = f_m - f_s (\beta[n] - \beta[n-1])$$

$$= f_m - D_p f_s \left(\cos \left(\frac{2\pi f_0}{f_s} n \right) - \cos \left(\frac{2\pi f_0}{f_s} (n-1) \right) \right)$$

(14)

The Doppler shift is thus

$$f_D = D_p f_s \left[\cos \left(\frac{2\pi f_0}{f_s} n \right) - \cos \left(\frac{2\pi f_0}{f_s} (n-1) \right) \right] \text{Hz/sample}$$

(15)

Beyond the Doppler view in (15), you can also consider (12) as sinusoidal frequency modulation (FM) [5]. To match the analysis of [5] assume that the delay is symmetrical about zero and further assume that $-\cos(\cdot)$ is replaced by $+\sin(\cdot)$. With these changes you can write

$$y[n] = \Re \left\{ e^{j2\pi f_m \cdot n/f_s} \cdot e^{j\beta_{FM} \sin(\omega_0 (n/f_s))} \right\}$$

(16)

where β_{FM} is equivalent to the modulation index found in sinusoidal phase/frequency modulation [5] is given by

$$\beta_{FM} = 2\pi f_m \cdot \frac{D_p}{f_s} = 2\pi f_m \cdot D_p T, T$$

(17)

where $T = 1/f_s$ is the sampling period. The spectrum of $y[n]$ or in reality $y(t)$ as captured at the output of the DAC, can be found by comparing (15) to sinusoidal frequency modulation in [5]. To make the connection replace n/f_s with t, as if to convert from continuous to discrete variables. Note this is an approximation, but for $f_m, f_0 \ll f_s$ the approximation is better. Now (15) becomes

$$y(t) = \Re \left\{ e^{j2\pi f_m \cdot t} \cdot e^{j\beta_{FM} \sin(2\pi f_0 t)} \right\}$$

$$= A_m \sum_{n=-\infty}^{\infty} J_n(\beta_{FM}) \cos \left[(2\pi f_m + n 2\pi f_0) t \right]$$

(18)

where $J_n(\cdot)$ is the Bessel function of the first kind having order n. The spectrum of $y(t)$, the DAC output, is a line spectrum centered about f_m with sidebands spaced at $\pm n f_0$.

A simulation model in Python (available in the “DDS and Application.ipynb”) is compared
with measurements taken on the FM4 using the Analog Discovery in Figure 10.

```
import scipy.special as special

def flanging_sinusoid_spec(fm,f0,Dp,N_lines,fs):
    
    Mark Wickert November 2016
    
    beta = 2*pi*fm*Dp/fs
    print('beta = %4.2f' % beta)
    n_lines = arange(-N_lines,N_lines+1)
    f = n_lines*f0
    Y = zeros(len(f))
    for k, n_linesk in enumerate(n_lines):
        Y[k] = abs(special.jn(n_linesk,beta))
    f += fm
    return f, Y

f, Y = flanging_sinusoid_spec(5000,20,40,100,48000)

beta = 26.18

f_AD,SV1_AD,SV2_AD = loadtxt('flanger_spec_fm5k_Dp100_f020_fs48.csv',
    delimiter=',',skiprows=6,unpack=True)

f, Y = flanging_sinusoid_spec(5000,20,100,100,48000)

beta = 65.45
```

![Theory Spectrum](image1)

![Meas. Spectrum](image2)

Figure 10: The induced Doppler spectrum, like the spectrum of a frequency modulated carrier for $f_m = 5$ kHz, $f_0 = 20$ Hz and $D_p = 100$ samples.
Application: FM Communications Receiver

A very important application of the DDS is in a communications receiver utilizing complex frequency translation. The sine and cosine signals of a DDS form a complex sinusoid that is used to frequency translate an input/received signal, e.g., from 30 kHz to baseband ($f = 0$). Demodulation is then performed on the now complex signal to recover the message signal.

Receiving System Details

Suppose the signal of interest is a frequency modulated (FM) carrier waveform given by

$$x_c(t) = A_c \cos \left[2\pi f_c t + 2\pi \int d f \int m(\lambda) d\lambda \right].$$ \hspace{1cm} (19)

You study this waveform in detail in ECE 4625/5620, Communications Systems I. The signal carrier or center frequency is f_c Hz. The information or message carried by the signal is $m(t)$. The message signal can be analog voice or music, or digitally encoded information. A generic frequency spectrum for the FM signal $x_c(t)$ is shown in Figure 11. Mathematically the spectrum of

![Figure 11: Spectrum of an FM carrier centered at f_c Hz.](image)

$x_c(t)$ takes the form

$$X_c(f) = \frac{1}{2} [X_{BB}(f-f_c) + X_{BB}(f+f_c)]$$ \hspace{1cm} (20)

where $X_{BB}(f)$ is the complex baseband spectrum corresponding to $x_c(t)$. Note $x_{BB}(t)$ is really just

$$x_{BB}(t) = A_c \exp \left[j 2\pi f_c \int d f \int m(\lambda) d\lambda \right].$$ \hspace{1cm} (21)

and

$$x_c(t) = \text{Re} \left\{ x_{BB}(t) e^{j 2\pi f_c t} \right\}. $$ \hspace{1cm} (22)

To get your hands on $x_{BB}(t)$ all you need to do is complex frequency translate either to the left or right by f_c Hz and lowpass filter to one half the FM RF bandwidth, B_{FM}.
In the lab tasks you will choose to make the translation frequency negative to move the spectrum to the left. If in doubt, recall from Fourier transform theory that

\[
\text{FT}\{x(t)e^{j2\pi f_0 t}\} = X(f-f_0) \tag{24}
\]

where \(X(f) = \text{FT}\{x(t)\}\). The second step is to demodulate the message \(m(t)\) from \(x_{BB}(t)\). In communication systems you learn that a frequency discriminator of some sort is required. Here you use a DSP implementation that fits well with the overall receiver architecture.

DSP Receiver Implementation

A DSP based receiver utilizing the capabilities of the FM4 board is shown in Figure 12. The main signal flow passes from input to output using the left audio channel. The sampling rate is set to 96 kspfs, which is the fastest rate supported by the audio codec.

Since the complex frequency translation is performed on the sampled input signal, \(x_c[n]\), there are some differences due to spectral images. Consider Figure 13 to help visualize how sampling...
followed by complex frequency translation and a lowpass filter achieves the intended result.

Note that the spectrum of a complex signal is not symmetrical (in magnitude) about \(f = 0 \). Communications applications of real-time DSP typically involve complex signals.

Complex Baseband Discriminator

The complex baseband signal \(y[n] \) for the case of an FM input signal, is of the form

\[
y[n] = A_c e^{\phi[n]} = A_c \{ \cos(\phi[n]) + j \sin(\phi[n]) \} = y_I[n] + jy_Q[n].
\]

(25)

Note \(\phi[n] = \tan^{-1}(x_Q[n]/x_I[n]) \). The frequency discriminator seeks to find the derivative of the phase \(\phi[n] \). In the continuous-time domain the derivative of the inverse tangent function is

\[
z(t) = \frac{d\phi(t)}{dt} = \frac{y_I(t)y_Q'(t) - y_Q(t)y_I'(t)}{y_I^2(t) + y_Q^2(t)}.
\]

(26)

A discrete-time approximation to the above derivative is

\[
z[n] = \frac{y_I[n] \cdot (y_Q[n] - y_Q[n-1]) - y_Q[n] \cdot (y_I[n] - y_I[n-1])}{y_I^2[n] + y_Q^2[n]}.
\]

(27)

Here the denominator of (27) can be omitted since the magnitude squared of the FM signal is a constant.

Python Simulation

To verify the receiver design approach before writing any C-code a simulation is good practice. The Jupyter notebook “dds and Applications.ipynb” contains such as model. The starting point is generating a real FM signal centered at 30 KHz. The message signal will be a 1 kHz sinusoid deviating the 30 kHz carrier by 2.0 kHz peak. There are various ways to generate FM, but it
easy to use a modified version of \texttt{DDS}():

```python
def FM_gen(m,f0,fs,real_output = True):
    """
x, a_out = FM_gen(m,f0,fs)
m = message signal, amp. sets Df in fs units
f0 = carrier frequency
fs = sampling rate
x = output waveform
a_out = [0,1] accumulator output
    """
    a_out = mod(cumsum(f0/fs + m/fs),1) # avoid for loop
    x = exp(1j*(2*pi*a_out)) # start with complex
    if real_output:
        x = x.real
    return x, a_out
```

The complex baseband discriminator is implemented in the function \texttt{discrim.m}:

```python
def discrim(x):
    """
disdata = discrim(x)
where x is an angle modulated signal in complex baseband form.
    """
    X=np.real(x)        # X is the real part of the received signal
    Y=np.imag(x)        # Y is the imaginary part of the received signal
    b=np.array([1, -1]) # filter coefficients for discrete derivative
    a=np.array([1, 0])  # filter coefficients for discrete derivative
    derY=signal.lfilter(b,a,Y)  # derivative of Y,
    derX=signal.lfilter(b,a,X)  # "          X,
    disdata=(X*derY-Y*derX)/(X**2+Y**2)
    return disdata
```

The function \texttt{DDS}() is used to generate a complex sinusoid for frequency translation and a filter coefficients (and later a filter coefficients header file) are obtained using the functions:

```python
import iir_design_helper as IIR_d
import coeff2header as c2h
b, a, sos = IIR_d.IIR_lpf(5000, 6000, 0.5, 80, 96000,'cheby1')
# or
sos = signal.butter(10, 2*10/96,output='sos')
c2h.IIR_sos_header('FM_LPF1.h',sos)
```

The complete simulation is as follows:

```python
n = arange(100000)
m = cos(2*pi*1000/96000*n) # 1000 Hz sinsoid message
xc, a_out = FM_gen(2000*m,30000,96000) # 2000 Hz peak deviation
x = xc*exp(-1j*2*pi*30/96*n) # complex frequency translate
y = signal.lfilter(b,a,x) # lowpass filter x = xI + j xQ
z = dds.discrim(y) # Send through discriminator
N0 = 500 # point to display
```

The input spectrum, the frequency translated spectrum, and the filtered spectrum are shown as subplots in Figure 14.
The final discriminator output signal $z[n]$ is given in Figure 14.

Figure 14: The spectra at (a) the input, (b) following complex frequency translations, and (c) after the lowpass filter, in the Python simulation of the FM receiver.

The 1 kHz message signal recovered at the output of the discriminator in the Python simulation.
The model results look good. The system can now be implemented on the FM4 with added confidence.

FM4 Sample Outputs

A complete implementation on the FM4 is tested using the Analog Discovery and its FM signal source and scope/spectrum analysis capabilities. An FM signal with a sinusoidal message at 1 kHz and 30 kHz carrier is configured as shown in Figure 16.

![Setting up the function generator in Analog Discovery to produce an FM carrier at 30 kHz with a 1 kHz sinusoidal message at peak deviation of 0.0667 x 30 kHz = 2 kHz.](image)

Figure 16: Setting up the function generator in Analog Discovery to produce an FM carrier at 30 kHz with a 1 kHz sinusoidal message at peak deviation of 0.0667 x 30 kHz = 2 kHz.

The signal captured at the output of the complex baseband discriminator is shown in Figure 17.

![The signal captured at the output of the complex baseband discriminator.](image)

The spectrum is clean with the exception of harmonics at the message frequency. This is expected due to the known nonlinear behavior of the discriminator algorithm.
Expectations

When completed, submit a lab report which documents code you have written and a summary of your results. Screen shots from the scope and any other instruments and software tools should be included as well. I expect lab demos of certain experiments to confirm that you are obtaining the expected results and knowledge of the tools and instruments.

The ZIP package Lab6.zip, contains a complete Keil project for the lab and in the Python notebook you will find the supporting Jupyter notebook, “DDS and Applications.ipnb”, the Python module dds.py, a wave file, Music_Test.wav, for checking out flanging, and other supporting files, e.g., filter design functions and CSV files created by the Analog Discovery.

Problems

1. **DO 2016** Implement the DDS code described at the bottom of p. 3 on the FM4. The task boils down to porting the C code from GCC code example given earlier to the Cortex-M. You will want to define the accumulator variables as globals and the updates to the accumulator, including the call to \(\text{cosf}() / \text{arm_cos_f32}() \), will be inside the codec ISR. Choose the sampling frequency to be 48 kHz. Setup a GUI slider to allow the frequency to step from 1 Hz to 20 kHz in 1 Hz steps. Note I recommend using the \(\text{arm_sin_f32}() / \text{arm_cos_f32}() \) functions over \(\text{sinf}() / \text{cosf}() \), as they execute faster.

The lab instructor will ask you to demo this via the spectrum analyzer (Agilent 4395A in spectrum analyzer mode) and/or the scope.

2. Experimentally find the ISR service time of the simple DDS of Problem 1 using the digital I/O technique first described in Lab 3.

3. **OMIT 2016** In Problem 1 the basic DDS calculation is of the form

\[
x_L = (\text{int16}_t) (\text{FM4_GUI.P_vals}[0] * 15000 * \text{arm_cos_f32}(\text{angle}));
\]

An efficient DDS uses a LUT in place of this on-the-fly cosine calculation. In this problem, rather than implementing an actual LUT, you will emulate one by doing some fixed-point conversions in the argument of \(\text{arm_cos_f32}() \). To start with note that the 15000 scales the \(\text{arm_cos_f32}() \) value to lie near the max amplitude range of an \(\text{int32}_t \) when the GUI scaling is taken into account (recall \([-32768, 32767]\)). The only fixed-point quantization that is taking place presently is casting the cosine values from \(\text{float32}_t \) to \(\text{int32}_t \) as they execute faster.

To emulate the LUT consider a rework of the original code to set up a float accumulator running from \([0, 1]\), but quantized in the argument of \(\text{arm_cos_f32}() \). The code below increments the accumulator \(a \) by \(0 < f_0/f_s < 1 \) (in code float_fs), for \(f_0/f_s = 1000/48000 \). The argument of \(\text{arm_cos_f32}(\cdot) \) is \(2\pi \cdot Q_W(f_0/f_s) \), where \(Q_W(\cdot) \) is a \(W \) bit quantizer implemented as
Note \(\text{int32}[] \) represents casting a \(\text{float32}_t \) value to an \(\text{int32}_t \) integer. The returned float value of (28) is again a float because \(2^{-W} \) is represented as a \(\text{float32}_t \) constant. The returned value is however quantized. The modified DDS c-code is given below:

```c
// DDS variables for fixed 1 kHz and fs = 48000 Hz
float32_t twopi = 6.283185307179586;
float32_t acc = 0;
float32_t f0_fs = 0.020833333333333; // f0/fs = 1000/48000
float32_t a_scale_p = 1<<W; // emulate a table size of \( 2^{W} \) entries
float32_t a_scale_m = 1.0f/(1<<W); // using these scaling constants

void PRGCRC_I2S_IRQHandler(void)
{
    union WM8731_data sample;
    int16_t xL, xR;
    float32_t x, y;
    int16_t a_int16;

    gpio_set(DIAGNOSTIC_PIN,HIGH);
    // Get L/R codec sample
    sample.uint32bit = i2s_rx();

    // Do more processing on LEFT and RIGHT channels
    x = (float32_t) sample.uint16bit[LEFT];
    //x = (float32_t) (rand_int32()>>4);
    // DDS phase accumulator using integers
    a_int16 = (int16_t)(acc*a_scale_p + 0.5f);
    y = arm_cos_f32(twopi*a_int16*a_scale_m);
    acc += f0_fs;
    if (acc >= 1) acc -= 1.0f;

    // No processing done to the right channel

    // Return L/R samples to codec via C union with slider gain
    xL = (int16_t) (FM4_GUI.P_vals[0] * 15000*y);
    xR = (int16_t) (FM4_GUI.P_vals[1] * sample.uint16bit[RIGHT]);
    sample.uint16bit[LEFT] = xL;
    sample.uint16bit[RIGHT] = xR;
    i2s_tx(sample.uint32bit);

    NVIC_ClearPendingIRQ(PRGCRC_I2S_IRQn);
    gpio_set(DIAGNOSTIC_PIN,LOW);
}
```

a) Using the spectrum analyzer mode of the Agilent 4395A, characterize the spectrum
quality of the 1 kHz output signal for \(W=16 \). The quantity of interest is the spurious free dynamic range (SFDR) as shown in Figure 8. The SFDR measures the maximum dynamic range between the signal of interest and any adjacent spurs. The ISR code DDS_ISRs_p3.c has the frequency set to 1 kHz. Keep that setting for all measurements.

b) Repeat part (a) for \(W=12 \).

4. **Do f2016** Implement the audio flanging system of Figure 9 using the DDS design of Problem 1 to implement the time delay control oscillator. The starting point will be the variable delay code from Lab 4. For example:

```c
#define N_buff 481

int32_t rand_int32(void);
int16_t pmod(int16_t a, int16_t b);

// Create (instantiate) GUI slider data structure
struct FM4_slider_struct FM4_GUI;

// Parameters used by circular buffer and extracting a delayed sample
int16_t ptr, delay;
float32_t circbuf[N_buff];

void PRGCRC_I2S_IRQHandler(void)
{
    union WM8731_data sample;
    int16_t xL, xR;
    float32_t x, y;

    gpio_set(DIAGNOSTIC_PIN,HIGH);
    // Get L/R codec sample
    sample.uint32bit = i2s_rx();

    // Do more processing on LEFT and RIGHT channels
    x = -(float32_t) sample.uint16bit[LEFT];

    // Begin buffer processing
    // Write new input over oldest buffer value
    circbuf[ptr] = x;
    // Calculate delay index working backwards
    delay = (int16_t) FM4_GUI.P_vals[2];
    y = circbuf[pmod(ptr - delay,N_buff)];
    // Update ptr to write over the oldest value next time
    ptr = (ptr + 1) % N_buff;

    // Return L/R samples to codec via C union with slider gain
    xL = (int16_t) (FM4_GUI.P_vals[0] * y);
    xR = (int16_t) (FM4_GUI.P_vals[1] * (x));
    sample.uint16bit[LEFT] = xL;
    sample.uint16bit[RIGHT] = xR;
    i2s_tx(sample.uint32bit);
    NVIC_ClearPendingIRQ(PRGCRC_I2S_IRQn);
}
```
```c
gpio_set(DIAGNOSTIC_PIN,LOW);
}

int main(void)
{
    int16_t m;
    // Initialize the slider interface by setting the baud rate (460800 or 921600)
    // and initial float values for each of the 6 slider parameters
    init_slider_interface(&FM4_GUI,460800, 1.0, 1.0, 10.0, 0.0, 0.0, 0.0);

    // Initialize the delay buffer with zeros
    for (m = 0; m <= N_buff; m++)
    {
        circbuf[m] = 0.0f;
    }
    // Initialize the circular buffer pointer
    ptr = 0;
    delay = 10;
    ...
}
```

The design requirements on the flanger parameters are: delay mix gain, \(0 \leq \alpha \leq 1 \), delay oscillation frequency range, \(0.1 \leq \beta \leq 10 \) Hz, and peak delay tunable over \(10 \leq D_p \leq 200 \) samples. The variable delay thus needs to contain at least 400 states. Padding the delay length up 500 samples is a good starting point. Use the left in and out channels for \(x[n] \) and \(y[n] \) respectively. Send a scaled version of the delay control signal to the right channel output, e.g.,

\[
x_R = (\text{int16_t}) (\text{FM4_GUI.P_vals}[1] \times (\text{delay} \times 10));
\]

Note delay is created as in \text{int16_t} type.

a) As an initial test of the flanger input a 5000 Hz sinusoidal signal and observe the spectrum of the output with \(D_p = 50, f_m = 5 \) kHz, and \(f_0 = 20 \) Hz. Set the gain mix slider \(\alpha = 1 \) so that only the delay output is sent to the codec left channel. Observe the FM-like spectrum on the spectrum analyzer and compare it with the theoretical spectrum calculated using the examples found in the provided “DDS and Applications.ipnb” Jupyter notebook. Once you have good agreement between theory and measured, you can move on to experience flanging in part (b).

b) Use the supplied wave file \text{music_test.wav} to output audio from the PC headphone jack into the Line-in jack of the FM4. The program material is a keyboard/synthesizer vamp with a simple rhythm section. I suggest you keep the flanging rate \(f_0 \) between 0.1 and 1 Hz. Try different mix values \(\alpha \) and peak delay \(D_p \). Demo to your instructor. If you have other audio tracks that in your opinion reveal the flanging effect more clearly, go for it. You also need to experience what happens when \(f_0 \) goes above 1 Hz. Comment on what you hear.

5. Try Out f2016 (code provided) In this problem you will explore the FM receiver design of Part II. As an FM signal source you will use the internal FM capability of the Agilent 33250 function generator or the two channel generator capability of the MSOX6004A scope found

Problems
at your lab bench. Your lab instructor will help you with the set-up of the generator.

a) Write C code to implement the FM receiver described in Figure 12. As a starting point find the file FM_Demod_ISRc.c as the starting point.

b) Configure the Agilent 33250 to produce a sinusoidal FM signal having \(f_c = 30 \text{ kHz} \), a modulation frequency of 1 kHz, and a peak frequency deviation in the range of 1 to 3 kHz. Start with a 2 kHz deviation as discussed in the background section.

c) Experiment with mistuning the frequency of the DDS relative to the known FM signal carrier at 30 kHz. How far above and below 30 kHz can you tune the DDS without resulting in a heavily distorted demodulated 1 kHz sinusoid?

References

Appendix

Dealing with Spurs

Spurs are a known fact of DDS implementations. Design techniques to mitigate spurs are described in [1],[2], and [3]. The root cause of spurs is the fact that the quantizer \(Q(\) \) introduces phase error

\[
\delta \theta[n] = \hat{\theta}[n] - \theta[n]. \quad (29)
\]

The accumulator output driving the LUTs is of the form

\[
\hat{\theta}[n] = \theta[n] + \delta \theta[n]. \quad (30)
\]

In the generation of a complex sinusoid (sin and cos), i.e., \(e^{j\hat{\theta}[n]} = \cos(\hat{\theta}[n]) + j\sin(\hat{\theta}[n]) \), you can write
assuming the error is small. The error phase is also a periodic ramp signal so it effectively modulates \(\theta[n] \) via the term \(j \delta \theta[n] e^{j \theta[n]} \). This action produces sidebands at frequency offsets from the fundamental frequency (4 kHz in the case of Figure 6b).

One mitigation approach is to inject a small random dithering signal at the input to the quantizer as shown in Figure 18. The idea is that the dithering signal disrupts the periodicity and replaces it with a dominant random phase error [1]. The corresponding error spectrum is transformed from spectral lines to a flat noise-like spectrum across the entire spectrum. The spectrum now has a noise floor, but the spurs are gone and/or reduced. The module dds.py contains DDS_dither():

```python
def DDS_dither(f0, fs, N_samps, Bcos, Bacc, Bw):
    """
    x, a_out, n = DDS(f0, fs, N_samps, Bcos, Bacc, Bw)
    /////////////// Inputs ///////////////
    f0 = desired output frequency
    fs = sampling frequency
    N_samps = number of samples to simulate
    Bcos = bit width of cos/sin values
    Bacc = bit width of the accumulator
    Bw = bit width of the LUT address
    /////////////// Outputs ///////////////
    x = output signal
    a_out = accumulator normalized to a [0,1) float value
    n = time index
    """
    n = np.arange(N_samps-1)
    x = np.zeros(len(n))
    a_out = np.zeros(len(n))
    a = 0
    w = 0
    theta = 0
    for k in range(len(n)):
        #x[k] = np.cos(2*np.pi*a)
        x[k] = ssd.simpleQuant(np.cos(2*np.pi*w/2**Bw), Bcos, 1, 'none')  # Adjusted to match the original code
        a += round(f0/fs*2**Bacc)
        if a >= 2**Bacc:
            a = 0
    return x, a_out, n
```

Figure 18: Finite precision DDS with dithering to mitigate spurs.
a -= 2**Bacc
a = a + np.random.randn(1)*2**(Bacc - Bw - 3); # Dithering added here
w = round(a/2**(Bacc-Bw))
a_out[k] = w/2**Bw
return x, a_out, n

Reworking the results of Figure 6, you now have the results shown in Figure 19.

Listing for dds.py

```python
# Figure 19: DDS output at 14 kHz for \( f_s = 48 \text{ kHz}, B_{acc} = 32, B_w = 16 \), and
# \( B_{\cos} = 16 \) without (above) and with (below) dithering.
```

Appendix
Direct Digital Synthesis Simulation

Mark Wickert November 2016

Development continues!

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>.

import numpy as np
import ssd
from scipy import signal

def DDS(f0,fs,N_samps,Bcos,Bacc,Bw):
 n = np.arange(N_samps-1)
 x = np.zeros(len(n))
 a_out = np.zeros(len(n))
 a = 0
 w = 0
 theta = 0
 for k in range(len(n)):
 #x[k] = np.cos(2*np.pi*a)
 x[k] = ssd.simpleQuant(np.cos(2*np.pi*w/2**Bw),Bcos,1,'none')
 a += round(f0/fs*2**Bacc)
 if a >= 2**Bacc:
 a -= 2**Bacc
 w = round(a/2**(Bacc-Bw))
 a_out[k] = w/2**Bw
 return x, a_out, n
```python
def DDS_dither(f0, fs, N_samps, Bcos, Bacc, Bw):
    """
    x, a_out, n = DDS(f0, fs, N_samps, Bcos, Bacc, Bw)
    """
    # Inputs
    f0 = desired output frequency
    fs = sampling frequency
    N_samps = number of samples to simulate
    Bcos = bit width of cos/sin values
    Bacc = bit width of the accumulator
    Bw = bit width of the LUT address
    # Outputs
    x = output signal
    a_out = accumulator normalized to a [0,1) float value
    n = time index

    Mark Wickert November 2016
    """
    a = 0
    w = 0
    theta = 0
    for k in range(len(n)):
        x[k] = ssd.simpleQuant(np.cos(2*np.pi*w/2**Bw), Bcos, 1, 'none')
        a += round(f0/fs*2**Bacc)
        if a >= 2**Bacc:
            a -= 2**Bacc
            a = a + np.random.randn(1)*2**(Bacc - Bw - 3) # Dithering added here
        w = round(a/2**(Bacc-Bw))
        a_out[k] = w/2**Bw
    return x, a_out, n

def DDS_float(f0, fs, N_samps, Bcos=32):
    """
    x, a_out, n = DDS_float(f0, fs, N_samps, Bcos, Bacc, Bw)
    """
    # Inputs
    f0 = desired output frequency
    fs = sampling frequency
    N_samps = number of samples to simulate
    Bcos = float cos size: 32 or 64
    # Outputs
    x = output signal
    a_out = accumulator normalized to a [0,1) float value
    n = time index

    Mark Wickert November 2016
    """
    a = 0
    pi32 = np.float32(np.pi)
    pi64 = np.float64(np.pi)
    theta = 0
    for k in range(len(n)):
        #x[k] = np.cos(2*np.pi*a)
        x[k] = ssd.simpleQuant(np.cos(2*np.pi*w/2**Bw), Bcos, 1, 'none')
        a += round(f0/fs*2**Bacc)
        if a >= 2**Bacc:
            a -= 2**Bacc
            a = a + np.random.randn(1)*2**(Bacc - Bw - 3) # Dithering added here
        w = round(a/2**(Bacc-Bw))
        a_out[k] = w/2**Bw
    return x, a_out, n
```

if Bcos == 32:
 x[k] = np.cos(a,dtype=np.float32)
 a += np.float32(2*pi32*f0/fs)
 if a >= 2*pi32:
 a -= 2*pi32
 a_out[k] = a/(2*pi32)
else:
 x[k] = np.cos(a,dtype=np.float64)
 a += np.float64(2*pi64*f0/fs)
 if a >= 2*pi64:
 a -= 2*pi64
 a_out[k] = a/(2*pi64)
return x, a_out, n

def discrim(x):
 """
 disdata = discrim(x)
 where x is an angle modulated signal in complex baseband form.
 """
 X=np.real(x) # X is the real part of the received signal
 Y=np.imag(x) # Y is the imaginary part of the received signal
 b=np.array([1, -1]) # filter coefficients for discrete derivative
 a=np.array([1, 0]) # filter coefficients for discrete derivative
 derY=signal.lfilter(b,a,Y) # derivative of Y,
 derX=signal.lfilter(b,a,X) # " X,
 disdata=(X*derY-Y*derX)/(X**2+Y**2)
 return disdata

def FM_gen(m,f0,fs,real_output = True):
 """
 x,a_out = FM_gen(m,f0,fs)
 m = message signal, amp. sets Df in fs units
 f0 = carrier frequency
 fs = sampling rate
 x = output waveform
 a_out = [0,1] accumulator output
 """
 a_out = np.mod(np.cumsum(f0/float(fs) + m/float(fs)),1) # avoid for loop
 x = np.exp(1j*(2*np.pi*a_out)) # start with complex
 if real_output:
 x = x.real
 return x, a_out