Spectrum Representation

- Extending the investigation of Chapter 2, we now consider signals/waveforms that are composed of multiple sinusoids having different amplitudes, frequencies, and phases

\[x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi f_k t + \phi_k) \]

(3.1)

\[= X_0 + \text{Re}\left\{ \sum_{k=1}^{N} X_k e^{j2\pi f_k t} \right\} \]

where here \(X_0 = A_0 \) is real, \(X_k = A_k e^{j\phi_k} \) is complex, and \(f_k \) is the frequency in Hz

- We desire a graphical representation of the parameters in (3.1) versus frequency

The Spectrum of a Sum of Sinusoids

- An alternative form of (3.1), which involves the use of the inverse Euler formula’s, is to expand each real cosine into two complex exponentials

\[x(t) = X_0 + \sum_{k=1}^{N} \left\{ \frac{X_k}{2} e^{j2\pi f_k t} + \frac{X_k^*}{2} e^{-j2\pi f_k t} \right\} \]

(3.2)
The Spectrum of a Sum of Sinusoids

Note that we now have each real sinusoid expressed as a sum of positive and negative frequency complex sinusoids

Two-Sided Sinusoidal Signal Spectrum: Express \(x(t) \) as in (3.2) and then the spectrum is the set of frequency/amplitude pairs

\[
\{(0, X_0), (f_1, X_1/2), (-f_1, X_1^*/2), \ldots \\
(f_k, X_k/2), (-f_k, X_k^*/2), \ldots \\
(f_N, X_N/2), (-f_N, X_N^*/2)\}
\] (3.3)

- The spectrum can be plotted as vertical lines along a frequency axis, with height being the magnitude of each \(X_k \) or the angle (phase), thus creating either a two-sided magnitude or phase spectral plot, respectively

- The text first introduces this plot as a combination of magnitude and phase, but later uses distinct plots

Example: Constant + Two Real Sinusoids

\[
x(t) = 5 + 3\cos(2\pi \cdot 50 \cdot t + \pi/8) \\
+ 6\cos(2\pi \cdot 300 \cdot t + \pi/2)
\] (3.4)

- We expand \(x(t) \) into complex sinusoid pairs

\[
x(t) = 5 + \frac{3}{2}e^{j(2\pi50t + \pi/8)} + \frac{3}{2}e^{-j(2\pi50t + \pi/8)} \\
+ 6e^{j(2\pi300t + \pi/2)} + 6e^{-j(2\pi300t + \pi/2)}
\] (3.5)
• The frequency pairs that define the two-sided line spectrum are

\[(0, 5), (50, 1.5e^{j\pi/8}), (-50, 1.5e^{-j\pi/8}), (300, 3e^{j\pi/2}), -(300, 3e^{-j\pi/2})\] \hspace{1cm} (3.6)

• We can now plot the magnitude phase spectra, in this case with the help of a MATLAB custom function

```matlab
function Line_Spectra(fk,Xk,mode,linetype)
% Line_Spectra(fk,Xk,range,linetype)
% %----------------------------------------------------
% % fk = vector of real sinusoid frequencies
% % Xk = magnitude and phase at each positive frequency in fk
% % mode = 'mag' => a magnitude plot, 'phase' => a phase plot in radians
% % linetype = line type per MATLAB definitions
% % % Mark Wickert, September 2006; modified February 2009

if nargin < 4
    linetype = 'b';
end

my_linewidth = 2.0;

switch lower(mode) % not case sensitive
    case {'mag','magnitude'} % two choices work
        k = 1;
        if fk(k) == 0
            plot([fk(k) fk(k)],[0 abs(Xk(k))],linetype,...
                'LineWidth',my_linewidth);
            hold on
        else
            Xk(k) = Xk(k)/2;
            plot([fk(k) fk(k)],[0 abs(Xk(k))],linetype,...
```
The Spectrum of a Sum of Sinusoids

ECE 2610 Signals and Systems

'LineWidth',my_linewidth);
hold on
plot([-fk(k) -fk(k)],[0 abs(Xk(k))],linetype,...
 'LineWidth',my_linewidth);
end
for k=2:length(fk)
 if fk(k) == 0
 plot([fk(k) fk(k)],[0 abs(Xk(k))],linetype,...
 'LineWidth',my_linewidth);
 else
 Xk(k) = Xk(k)/2;
 plot([fk(k) fk(k)],[0 abs(Xk(k))],linetype,...
 'LineWidth',my_linewidth);
 plot([-fk(k) -fk(k)],[0 abs(Xk(k))],linetype,...
 'LineWidth',my_linewidth);
 end
end
grid
axis([-1.2*max(fk) 1.2*max(fk) 0 1.05*max(abs(Xk))])
ylabel('Magnitude')
xlabel('Frequency (Hz)')
hold off

case 'phase'
k = 1;
 if fk(k) == 0
 plot([fk(k) fk(k)],[0 angle(Xk(k))],linetype,...
 'LineWidth',my_linewidth);
 hold on
 else
 plot([fk(k) fk(k)],[0 angle(Xk(k))],linetype,...
 'LineWidth',my_linewidth);
 plot([-fk(k) -fk(k)],[0 -angle(Xk(k))],linetype,...
 'LineWidth',my_linewidth);
 hold on
 end
for k=2:length(fk)
 if fk(k) == 0
 plot([fk(k) fk(k)],[0 angle(Xk(k))],linetype,...
 'LineWidth',my_linewidth);
 else

The Spectrum of a Sum of Sinusoids

```matlab
plot([fk(k) fk(k)], [0 angle(Xk(k))], linetype,...
    'LineWidth', my_linewidth);
plot([-fk(k) -fk(k)], [0 -angle(Xk(k))],...
    linetype, 'LineWidth', my_linewidth);
end
end
grid
plot(1.2*[-max(fk) max(fk)], [0 0], 'k');
axis([-1.2*max(fk) 1.2*max(fk)
    -1.1*max(abs(angle(Xk))) 1.1*max(abs(angle(Xk)))])
ylabel('Phase (rad)')
xlabel('Frequency (Hz)')
hold off
otherwise
    error('mode must be mag or phase')
end

- We use the above function to plot magnitude and phase spectra for \( x(t) \); Note for the \( X_k \)'s we actually enter \( A_k e^{j\theta_k} \)

```
A Notation Change

- The conversion to frequency/amplitude pairs is a bit cumbersome since the factor of $X_k/2$ must be carried for all terms except X_0, therefore the text advocates a more compact spectral form where a_k replaces X_k according to the rule

\[
a_k = \begin{cases}
X_0, & k = 0 \\
\frac{1}{2}X_k, & k \neq 0
\end{cases} \quad (3.7)
\]

- We can then write more compactly the general expression for $x(t)$ as

\[
x(t) = \sum_{k = -N}^{N} a_k e^{j2\pi f_k t} \quad (3.8)
\]
• The new notations are overlaid in the previous example
• In some cases all of the frequencies in the above sum are related to a common or fundamental frequency, via integer multiplication

Beat Notes

• A special case that occurs when we have at least two sinusoids present, is an audio/musical effect known as a beat note.

• A beat note occurs when we hear the sum of two sinusoids that are very close in frequency, e.g.,

\[
x(t) = \cos(2\pi f_1 t) + \cos(2\pi f_2 t)
\]

(3.9)

where \(f_1 = f_c - f_\Delta \) and \(f_2 = f_c + f_\Delta \)

• In this definition

\[
f_c = \frac{1}{2}(f_1 + f_2) = \text{center frequency}
\]

(3.10)

\[
f_\Delta = \frac{1}{2}(f_2 - f_1) = \text{deviation frequency}
\]

we further assume that \(f_\Delta \ll f_c \)

Beat Note Spectrum
Consider \(\text{Line_Spectra([95, 105], [1, 1], 'mag') } \)

\[
\begin{align*}
 f_1 &= 95 \text{ Hz}, f_2 = 105 \text{ Hz} \\
 f_c &= 100 \text{ Hz}, f_\Delta &= 5 \text{ Hz}
\end{align*}
\]

Through the trig double angle formula, or by direct complex sinusoid expansion, we can write that

\[
x(t) = \cos(2\pi f_1 t) + \cos(2\pi f_2 t)
= \text{Re}\{e^{j2\pi(f_c - f_\Delta)t} + e^{j2\pi(f_c + f_\Delta)t}\}
= \text{Re}\{e^{j2\pi f_c t}[e^{-j2\pi f_\Delta t} + e^{j2\pi f_\Delta t}]\}
= \text{Re}\left\{e^{j2\pi f_c t} [2\cos(2\pi f_\Delta t)] \right\}
= 2\cos(2\pi f_\Delta t)\cos(2\pi f_c t)
\]

If \(f_\Delta\) is small compared to \(f_c\), then \(x(t)\) appears to have a slowly varying \textit{envelope} controlled by \(\cos(2\pi f_\Delta t)\) filled by the rapidly varying sinusoid \(\cos(2\pi f_c t)\).
Beat Note Waveform

- Consider \(f_c = 100 \) Hz and \(f_\Delta = 5 \) Hz

\[
\begin{align*}
&\text{>> t = 0:1/(50*100):2/5; } \\
&\text{>> x = 2*cos(2*pi*5*t).*cos(2*pi*100*t); } \\
&\text{>> plot(t,x) } \\
&\text{>> grid } \\
&\text{>> xlabel('Time (s)')} \\
&\text{>> ylabel('Amplitude')} \\
&\text{>> ylabel('Amplitude')} \\
\end{align*}
\]

As \(f_\Delta \) approaches zero, the envelope fluctuations become slower and slower, and the beat note becomes a steady tone/note; only a single frequency is heard and the line spectrum becomes a single pair of lines at just \(\pm f_c \)

- With two musicians tuning their instruments, the process of getting \(f_\Delta \to 0 \) is called in-tune
Multiplication of Sinusoids

- In the study of beat notes we indirectly encountered sinusoidal multiplication.
- Formally we may be interested in
 \[
 x(t) = \cos(2\pi f_1 t) \cdot \cos(2\pi f_2 t) \tag{3.12}
 \]
- Using trig identity 5 from the notes Chapter 2, we know that
 \[
 \cos \alpha \cos \beta = \frac{1}{2}[\cos(\alpha + \beta) + \cos(\alpha - \beta)] \tag{3.13}
 \]
- Using this result to expand (3.12) we have that
 \[
 x(t) = \cos(2\pi f_1 t) \cdot \cos(2\pi f_2 t)
 = \frac{1}{2}\{\cos[2\pi (f_1 - f_2)t] + \cos[2\pi (f_1 + f_2)t]\} \tag{3.14}
 \]
- In words, multiplying two sinusoids of different frequency results in two sinusoids, one at the sum frequency and one at the difference frequency.
- For the case where the frequencies are the same, we get
 \[
 x(t) = \cos^2(2\pi f_0 t) = \frac{1}{2}\{1 + \cos[2\pi (2f_0)t]\} \tag{3.15}
 \]

Amplitude Modulation

- Multiplying sinusoids also occurs in a fundamental radio communications modulation scheme known as *amplitude modulation* (AM).
 - Today AM broadcasting is mostly sports and talk radio.
To form an AM signal we let

\[x(t) = A_c[1 + \beta m(t)] \cos(2\pi f_c t) \]

(3.16)

where \(m(t) \) is a message or information bearing signal, \(f_c \) is the carrier frequency, and \(0 < \beta \leq 1 \) is the modulation index.

The spectral content of \(m(t) \) would be say, speech or music (typically low fidelity), such that \(f_c \) is much greater than the highest frequencies in \(m(t) \).

If \(\beta < 1 \) the envelope of \(x(t) \) never crosses through zero, and the means to recover \(m(t) \) from \(x(t) \) at a receiver is greatly simplified (so-called envelope detection).

```matlab
>> t = 0:1/(50*100):2/5;
>> x = (1+.5*cos(2*pi*5*t)).*cos(2*pi*100*t);
>> plot(t,x)
```

AM Modulation with \(A_c = 1, \beta = 0.5 \)
• The spectrum of an AM signal, for \(m(t) \) a single sinusoid, can be obtained by expanding \(x(t) \) as follows

\[
x(t) = A_c [1 + \beta \cos(2\pi f_\Delta t)] \cos(2\pi f_c t) \\
= A_c \cos(2\pi f_c t) \\
+ \frac{A_c \beta}{2} \{ \cos[2\pi(f_c - f_\Delta) t] + \cos[2\pi(f_c + f_\Delta) t] \}
\]

(3.17)

• Continuing the AM example with \(A_c = 1 \) and \(\beta = 0.5 \), we have

\[
x(t) = \cos(2\pi 100 t) \\
+ \frac{1}{4} \{ \cos[2\pi(95)t] + \cos[2\pi(105)t] \}
\]

(3.18)

>> Line_Spectra([95 100 105], [1/4 1 1/4], 'mag')

AM Modulation Ampl. Spectra with \(A_c = 1, \beta = 0.5 \)
Periodic Waveforms

• We have been talking about signals composed of multiple sinusoids, but until now we have not mentioned anything about these signals being periodic

• Recall that a signal is periodic if there exists some T_0 such that $x(t + T_0) = x(t)$
 – The smallest T_0 that satisfies this condition is the fundamental period of $x(t)$

Example: $x(t) = 2 \cos(2\pi 8t) \cos(2\pi 10t)$

• Expanding we have
 $$x(t) = \cos(2\pi 18t) + \cos(2\pi 2t), \quad (3.19)$$
 which has component sinusoids at 2 Hz and 18 Hz

• The fundamental period is $T_0 = 0.5$ s, with $f_0 = 1/T_0 = 2$ Hz being the fundamental frequency

• Since $18 = 9 \times 2$, we refer to the 18 Hz term as the 9th harmonic

• When a signal composed of multiple sinusoids is periodic, the component frequencies are integer multiples of the fundamental frequency, i.e., $f_k = kf_0$, in the expression
 $$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi f_k t + \phi_k) \quad (3.20)$$

• The fundamental frequency is the largest f_0 such that
Periodic Waveforms

\[f_k = m f_0, \text{ } m \text{ an integer, } k = 1, 2, \ldots, N, \text{ or in mathematical terms the greatest common divisor} \]
\[f_0 = \gcd\{f_k\}, k = 1, 2, \ldots, N \] \hspace{1cm} (3.21)

- In the example with \(f_1 = 2 \) and \(f_2 = 18 \) the largest divisor of \{2,18\} is 2, since 2/2 and 18/2 both result in integers, but there is no larger value that works

Example: Suppose \(\{f_k\} = \{3, 7, 9\} \) Hz

- The fundamental is \(f_0 = 1 \) Hz since 7 is a prime number

Nonperiodic Signals

- In the world of signal modeling both periodic and nonperiodic signals are found

- In music, or least music that is properly tuned, periodic signals are theoretically what we would expect

- It does not take much of a frequency deviation among the various components to make a periodic signal into a nonperiodic signal

Example: Three Term Approximation to a Square Wave

\[x_p(t) = \sin[2\pi(100)t] + \frac{1}{3}\sin[2\pi(300)t] + \frac{1}{5}\sin[2\pi(500)t] \]

- This signal is composed of 1st, 3rd, and 5th harmonic components; fundamental is 100 Hz

1. More on this later in the chapter.
• We plot this waveform using MATLAB

\[
\begin{align*}
> & t = 0:1/(50*500):0.1; \\
> & x_per = \sin(2\pi*100*t)+1/3*\sin(2\pi*300*t)+
\quad 1/5*\sin(2\pi*500*t); \\
> & \text{strips}(x_per,.1,50*500) \\
> & \text{xlabel('Time (s)'}) \\
> & \text{ylabel('Start Time of Each Strip')} \\
\end{align*}
\]

\[x_{np}(t) = \sin[2\pi(100)t] + \frac{1}{3}\sin[2\pi(\sqrt{89999})t] \\
\quad + \frac{1}{5}\sin[2\pi(\sqrt{249999})t]
\]

\[
\begin{align*}
> & x_nper = \sin(2\pi*100*t)+... \\
\end{align*}
\]
Periodic Waveforms

\[\frac{1}{3}\sin(2\pi\sqrt{89999}t) + \ldots \]
\[\frac{1}{5}\sin(2\pi\sqrt{149999}t) \];

>> strips(x_nper,.1,50*500)
>> xlabel('Time (s)')
>> ylabel('Start Time of Each Strip')

It is interesting to note that the line spectra of both signals is very similar, in particular the magnitude spectra as shown below

- No evidence of being periodic

• It is interesting to note that the line spectra of both signals is very similar, in particular the magnitude spectra as shown below

>> subplot(211)
>> Line_Spectra([100 300 500],[1 1/3 1/5],'mag')
>> subplot(212)
>> Line_Spectra([100 sqrt(89999) sqrt(249999)],
 [1 1/3 1/5],'mag')
Fourier Series

Through the study of Fourier\(^1\) series we will learn how any periodic signal can be represented as a sum of harmonically related sinusoids.

• The *synthesis* formula is

\[
x(t) = \sum_{k = -\infty}^{\infty} a_k e^{j(2\pi/T_0)kt}
\] \hspace{1cm} (3.22)

where \(T_0\) is the period

• The *analysis* formula will determine the \(a_k\) from \(x(t)\)

1. French mathematician who wrote a thesis on this topic in 1807.
- For \(x(t) \) a real signal, we see that \(a_{-k} = a_k^* = \text{conj}(a_k) \) and then we can write that

\[
x(t) = A_0 + \sum_{k=1}^{\infty} A_k \cos[(2\pi/T_0)kt + \phi_k], \quad X_k = A_k e^{j\phi_k} \quad (3.23)
\]

Fourier Series: Analysis

- To obtain a Fourier series representation of periodic signal \(x(t) \) we need to evaluate the Fourier integral

\[
a_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j(2\pi/T_0)kt} \, dt \quad (3.24)
\]

where \(T_0 \) is the fundamental period

- As a special case note that the DC component of \(x(t) \), given by \(a_0 \), is

\[
a_0 = \frac{1}{T_0} \int_0^{T_0} x(t) dt \quad (3.25)
\]

 - We call \(a_0 \) the average value since it finds the area under \(x(t) \) over one period divided (normalized) by \(T_0 \)

Fourier Series Derivation

- Since working with complex numbers is a relatively new concept, it might seem that proving (3.24) which involves complex exponentials, is out of reach for this course; not so

- The result of (3.24) can be established through a careful step-by-step process
• We begin with the property that integration of a complex exponential over an integer number of periods is identically zero, i.e.,
\[
\int_{0}^{T_0} e^{j(2\pi/T_0)kt} \, dt = 0 \quad (3.26)
\]
- **Verify Version #1:**
\[
\int_{0}^{T_0} e^{j(2\pi/T_0)kt} \, dt = \frac{e^{j(2\pi/T_0)kT_0} - 1}{j(2\pi k/T_0)} = 0
\]
 since \(e^{j2\pi k} = 1\) for any integer \(k = 1, 2, \ldots\)
- **Verify Version #2:** Expand the integrand using Euler’s formula
\[
\int_{0}^{T_0} e^{j(2\pi/T_0)kt} \, dt = \int_{0}^{T_0} \left\{ \cos\left[\left(\frac{2\pi}{T_0}\right)kt\right] + j\sin\left[\left(\frac{2\pi}{T_0}\right)kt\right] \right\} \, dt
\]
 = 0 + j0 = 0
 since integrating over one or more complete cycles of \(\sin/\cos\) is always zero
• Regardless of the harmonic number \(k\), all complex exponentials of the form \(v_k(t) = \exp[j(2\pi k/T_0)t]\), repeat with period \(T_0\), i.e.,
\[v_k(t + T_0) = e^{j\left(\frac{2\pi k}{T_0}\right)(t + T_0)} \]

\[= e^{j\left(\frac{2\pi k}{T_0}\right)T_0} \]

\[= v_k(t) \]

Orthogonality Property

\[\int_0^{T_0} v_k(t)v_l^*(t)dt = \begin{cases} 0, & k \neq l \\ T_0, & k = l \end{cases} \quad (3.27) \]

- Note:

\[v_l^*(t) = \{ \exp[j(2\pi l/T_0)t] \}^* = \exp[-j(2\pi l/T_0)t] \]

- Proof:

\[\int_0^{T_0} v_k(t)v_l^*(t)dt = \int_0^{T_0} e^{j\left(\frac{2\pi k}{T_0}\right)kt} e^{j\left(\frac{2\pi l}{T_0}\right)lt} dt \]

\[= \int_0^{T_0} e^{j\left(\frac{2\pi}{T_0}\right)(k-l)t} dt \]

- When \(k = l \) the exponent is zero and the integral reduces to
When \(k \neq l \), but rather some integer, say \(m \), we have

\[
\int_0^{T_0} e^{j(2\pi T_0)(k-l)t} \, dt = \int_0^{T_0} e^{j0} \, dt = \int_0^{T_0} \, dt = T_0
\]

Final Step: We now have enough tools to comfortably prove the Fourier analysis formula.

- We take the Fourier synthesis formula, multiply both sides by \(v_l^*(t) \) and integrate over one period \(T_0 \)

\[
x(t) = \sum_{k = -\infty}^{\infty} a_k e^{j(2\pi T_0)kt}
\]

\[
x(t)e^{-j(2\pi T_0)lt} = \sum_{k = -\infty}^{\infty} a_k e^{-j(2\pi T_0)lt} e^{j(2\pi T_0)kt}
\]

\[
\int_0^{T_0} x(t)e^{-j(2\pi T_0)lt} \, dt = \int_0^{T_0} \left\{ \sum_{k = -\infty}^{\infty} a_k e^{j(2\pi T_0)kt} e^{-j(2\pi T_0)lt} \right\} \, dt
\]

\[
= \sum_{k = -\infty}^{\infty} a_k \left\{ \int_0^{T_0} e^{j(2\pi T_0)kt} e^{-j(2\pi T_0)lt} \, dt \right\}
\]

- Due to the orthogonality condition, the only surviving term is when \(k = l \), and here the integral is \(T_0 \)
We are left with
\[
\int_{0}^{T_0} x(t)e^{-j\left(\frac{2\pi}{T_0}\right)lt} \, dt = a_l T_0
\]
or
\[
a_l = \frac{1}{T_0} \int_{0}^{T_0} x(t)e^{-j\left(\frac{2\pi}{T_0}\right)lt} \, dt
\]
and we have completed the proof!

Summary

\[
a_k = \frac{1}{T_0} \int_{0}^{T_0} x(t)e^{-j\left(\frac{2\pi}{T_0}\right)kt} \, dt \quad \text{Analysis}
\]
\[
x(t) = \sum_{k = -\infty}^{\infty} a_k e^{j(2\pi/T_0)kt} \quad \text{Synthesis}
\]

Spectrum of the Fourier Series

- The spectrum associated with a Fourier series representation is consistent with the earlier discussion of two-sided line spectra
- The frequency/amplitude pairs are
\[
\{(0, a_0), (\pm f_0, a_{\pm 1}), (\pm 2f_0, a_{\pm 2}), \ldots, (\pm kf_0, a_{\pm k}), \ldots\} \quad (3.29)
\]
Example: \(x(t) = \cos^2[2\pi(1500)t] \)

- This signal has a Fourier series representation that we can obtain directly by expanding \(\cos^2 \)

\[
\cos^2[2\pi(1500)t] = \left\{ \frac{e^{j2\pi 1500t} + e^{-j2\pi 1500t}}{2} \right\}^2
= \left(\frac{e^{j2\pi 3000t} + 2 + e^{-j2\pi 3000t}}{4} \right)
\]

\[
= \frac{1}{2} + \frac{1}{4}e^{j2\pi 3000t} + \frac{1}{4}e^{-j2\pi 3000t}
\]

Fourier Series Coeff. \(k \preceq 0 \)

By comparing the above with the general Fourier series synthesis formula, we see that relative to \(f_0 = 1/T_0 = 1500 \text{Hz} \)

\[
a_k = \begin{cases}
1/2, & k = 0 \\
1/4, & k = \pm 2 \\
0, & \text{otherwise}
\end{cases}
\]

Magnitude Spectrum

\[
f_0 = \frac{1}{T_0} = 1500 \text{ Hz}
\]
Fourier Analysis of Periodic Signals

We can synthesize an approximation to some periodic $x(t)$ once we have an expression for the Fourier coefficients $\{a_k\}$ using the first N harmonics

$$x_N(t) = \sum_{k = -N}^{N} a_k e^{j(2\pi/T_0)kt}.$$

(3.30)

- We can then implement the plotting of this approximation using MATLAB

The Square Wave

- Here we consider a signal which over one period is given by

$$s(t) = \begin{cases}
1, & 0 \leq t < T_0/2 \\
0, & T_0/2 \leq t < T_0
\end{cases}$$

(3.31)

- This is actually called a 50% duty cycle square wave, since it is *on* for half of its period

![Graph of a square wave with duty cycle 50%](image-url)
• We solve for the Fourier coefficients via integration (the Fourier integral)

\[
a_k = \frac{1}{T_0} \int_0^{T_0/2} (1)e^{-j(2\pi/T_0)kt} dt + 0
\]

\[
= \frac{1}{T_0} \left[\frac{e^{-j(2\pi/T_0)kt}}{-j(2\pi/T_0)k} \right]_0^{T_0/2} = \frac{1 - e^{-j\pi k}}{j2\pi k}
\]

(3.32)

• Notice that \(e^{-j\pi} = -1\), so

\[
a_k = \frac{1 - (-1)^k}{j2\pi k} \text{ for } k \neq 0
\]

(3.33)

and for \(k = 0\) we have

\[
a_0 = \frac{1}{T_0} \int_0^{T_0/2} (1)e^{-j0} dt = \frac{1}{2} \text{ (DC value)}
\]

(3.34)

– This is the average value of the waveform, which is dependent upon the 50% aspect (i.e., halfway between 0 and 1)

• In summary,

\[
a_k = \begin{cases}
\frac{1}{2}, & k = 0 \\
\frac{1}{j\pi k}, & k = \pm1, \pm3, \pm5, \ldots \\
0, & k = \pm2, \pm4, \pm6, \ldots
\end{cases}
\]

(3.35)
Spectrum for a Square Wave

- We can plot the square wave amplitude spectrum using the Line_Spectrum() function, by converting the coefficients from a_k back to X_k

\[
\begin{align*}
&\text{N} = 15; \quad k = 1:2:\text{N}; \quad \% \text{odd frequencies} \\
&\text{Xk} = 2/(j\pi k); \quad \% \text{Xk's at odd freqs, Xk} = 2ak \\
&k = [0 \ k]; \quad \% \text{augment with DC value} \\
&\text{Xk} = [1/2 \ Xk]; \quad \% \text{X0 = a0} \\
&\text{subplot(211)} \\
&\text{Line_Spectra(1*k,Xk,'mag')} \\
&\text{subplot(212)} \\
&\text{Line_Spectra(1*k,Xk,'phase')}
\end{align*}
\]

Only the odd harmonics present, i.e., $k = 1, 3, 5, \ldots$
Synthesis of a Square Wave

- We can synthesize a square wave by forming a partial sum, say up to the 15th harmonic; \(N = 15 \) in (3.30)

- First we modify syn_sin() for Fourier series modeling

```matlab
function [x,t] = fs_synth(fk, ak, fs, dur, tstart)
% [x,t] = fs_synth(fk, ak, fs, dur, tstart)
%
% Mark Wickert, September 2006

if nargin < 5,
    tstart = 0;
end

t = tstart:1/fs:dur;
x = zeros(size(t));
for k=1:length(fk)
    x = x + ak(k)*exp(j*2*pi*fk(k)*t);
end
```

- The code used to produce simulation results for \(x_{15}(t) \):

```matlab
>> N = 15; k = -N:2:N;
>> ak = 1./(j*pi*k);
>> fk = 1*[0 k];
>> ak = [1/2 ak];
>> [x,t] = fs_synth(fk, ak, 50*15, 3);
>> plot(t,real(x)) % note x is not purely real
>> grid % due to numerical imperfections
>> xlabel('Time (s)')
>> ylabel('Amplitude')
```
With the $N = 15$ approximation, we observe that there is ringing or ears as the waveform makes discontinuous steps from 0 to 1 and 1 back to 0.

This behavior is known as the **Gibbs phenomenon**, and comes about due to the discontinuity of the ideal square wave.

The next plot shows that regardless of N, the ringing persists with about a 9% overshoot/undershoot at the transition points.

The frequency of the rings increases as N increases.

```matlab
>> N = 3; k = -N:2:N;
>> ak = 1./(j*pi*k); ak = [1/2 ak];
>> fk = 1*[0 k];
>> [x3,t] = fs_synth(fk, ak, 50*15, 3);
>> N = 7; k = -N:2:N;
```
Fourier Analysis of Periodic Signals

>> ak = 1./(j*pi*k); ak = [1/2 ak];
>> fk = 1*[0 k];
>> [x7,t] = fs_synthesis(fk, ak, 50*15, 3);
>> N = 15; k = -N:2:N;
>> ak = 1./(j*pi*k); ak = [1/2 ak];
>> fk = 1*[0 k];
>> [x15,t] = fs_synthesis(fk, ak, 50*15, 3);
>> subplot(311); plot(t,real(x3))
>> ylabel('x_3(t)')
>> subplot(312); plot(t,real(x7))
>> ylabel('x_7(t)')
>> subplot(313); plot(t,real(x15))
>> ylabel('x_15(t)')
>> xlabel('Time (s)')
A limitation of Fourier series is that it cannot handle discontinuities very well, real physical waveforms do not have discontinuities to the extreme found in mathematical models.

Example: Frequency Tripler

- Suppose we have a sinusoidal signal

\[x(t) = A \cos(2\pi f_0 t) \]

and we would like to obtain a sinusoidal signal of the form

\[y(t) = B \cos(2\pi (3f_0) t) \]

- The systems aspect of this example is that we can convert \(x(t) \) into a square wave centered about zero, by passing the signal through a *limiter* (like a comparator)

\[x(t) = A \cos(2\pi f_0 t) \]

\[y(t) = \text{square wave centered about zero} \]

- The output signal \(y(t) \) is very similar to \(s(t) \), that is

\[y(t) = 2s(t + T_0/4) - 1 \]

- The Fourier series coefficients of the \(y(t) \) square wave and the \(s(t) \) square wave are related via an amplitude shifting and time shifting property

- Without going into the details, it can be said that the \(\{a_k\} \) coefficients for \(k \neq 0 \) still only exist for \(k \) odd, and have a scale factor of the form \(C/k \)
Fourier Analysis of Periodic Signals

- Note that $a_0 = 0$ why?
- The Fourier coefficients that contribute to $B\cos(2\pi(3f_0)t)$ are at $k = -3$ and 3
- Knowing that the line spectra consists of all of the odd harmonics, means that in order to obtain just the 3rd harmonic we need to design a filter that will allow just this signal to pass (a bandpass filter)
- A system block diagram with waveforms and line spectra is shown below

Triangle Wave

- Another waveform of interest is the triangle wave

$$x(t) = \begin{cases}
2t/T_0, & 0 \leq t < T_0/2 \\
2(T_0 - t)/T_0, & T_0/2 \leq t < T_0
\end{cases}$$

(3.36)
We use the Fourier analysis formula to obtain the \(\{ a_k \} \) coefficients, starting with the DC term

\[
a_0 = \frac{1}{T_0} \int_0^{T_0} x(t) dt = \frac{1}{T_0} \times \text{area} = \frac{1}{T_0} \cdot \frac{T_0}{2} = \frac{1}{2}
\]

(3.37)

The remaining terms are found using integration

\[
a_k = \frac{1}{T_0} \int_0^{T_0/2} \left\{ \frac{2t}{T_0} \right\} e^{-j(2\pi/T_0)kt} dt
\]

\[
+ \frac{1}{T_0} \int_{T_0/2}^{T_0} \left\{ \frac{2(T_0 - t)}{T_0} \right\} e^{-j(2\pi/T_0)kt} dt
\]

(3.38)

To evaluate this integral we must use integration by parts, or from a mathematical handbook\(^1\) lookup the result that

\[
\int x e^{ax} dx = \frac{e^{ax}}{a} \left(x - \frac{1}{a} \right)
\]

The symbolic engine of Mathematica can also solve this

$$I_1 = \frac{1}{T} \int \frac{2 t}{T} \exp \left[-j \frac{2 \pi}{T} k t \right], \{t, 0, \frac{T}{2} \}$$

$$- \frac{e^{-ik\pi} (-1 + e^{ik\pi} - ik\pi)}{2k^2\pi^2}$$

$$I_2 = \frac{1}{T} \int \frac{2(T-t)}{T} \exp \left[-j \frac{2 \pi}{T} k t \right], \{t, \frac{T}{2}, T \}$$

$$\frac{e^{-2ik\pi} (-1 + e^{ik\pi} (1 - ik\pi))}{2k^2\pi^2}$$

$$a_k = \text{FullSimplify}[I_1 + I_2]$$

$$- \frac{e^{-ik\pi} (-1 + \cos[k\pi])}{k^2\pi^2}$$

From the above Mathematica result, we note that

$$e^{-jk\pi} = (-1)^k$$ and \(\cos(k\pi) = (-1)^k\), so

$$a_k = -\frac{(-1)^k[(-1)^k-1]}{k^2\pi^2} = \begin{cases} \frac{2}{k^2\pi^2}, & k = \pm1, \pm3, \pm5, \ldots \\ 1/2, & k = 0 \\ 0, & k = \pm2, \pm4, \pm6, \ldots \end{cases}$$ (3.39)

since \((-1)^k[(-1)^k-1] = 2\) when \(k\) is odd and zero otherwise.

Triangle Wave Spectrum

- Compare the line spectra for a triangle wave and square wave
out to the 15th harmonic

\[
\begin{align*}
&\text{N} = 15; \ k = 1:2:\text{N}; \\
&\text{Xk} = 2.\div(j*\pi*k); \ \text{Xk} = [1/2 \ \text{Xk}]; \\
&\text{k} = [0 \ \text{k}]; \\
&\text{subplot}(211) \\
&\text{Line}_\text{Spectra}(1\text{k},\text{Xk},'\text{mag}') \\
&\text{N} = 15; \ k = 1:2:\text{N}; \\
&\text{Xk} = -4.\div(\pi^2\text{k}^2); \ \text{Xk} = [1/2 \ \text{Xk}]; \\
&\text{k} = [0 \ \text{k}]; \\
&\text{subplot}(212) \\
&\text{Line}_\text{Spectra}(1\text{k},\text{Xk},'\text{mag}')
\end{align*}
\]

- Note that the spectral lines drop off with \(1/k^2\) for the triangle wave, compared with just \(1/k\) for the square wave
• The relative smoothness of the triangle wave results in the faster spectrum decrease

Synthesis of a Triangle Wave
• As with the square wave, we can synthesize size a triangle wave by forming a partial sum, say for \(N = 3, 7, 15 \)

\[
N = 3; \quad k = -N:2:N;
\]
\[
[ak = -2./(pi^2*k.^2); \quad ak = [1/2 \cdot \text{ak}];
\]
\[
fk = 1*[0 \ k];
\]
\[
[x3,t] = fs_synth(fk, ak, 50*15, 3);
\]
\[
ylabel('x_3(t)');
\]
\[
N = 7; \quad k = -N:2:N;
\]
\[
[ak = -2./(pi^2*k.^2); \quad ak = [1/2 \cdot \text{ak}];
\]
\[
fk = 1*[0 \ k];
\]
\[
[x7,t] = fs_synth(fk, ak, 50*15, 3);
\]
\[
ylabel('x_7(t)');
\]
\[
N = 15; \quad k = -N:2:N;
\]
\[
[ak = -2./(pi^2*k.^2); \quad ak = [1/2 \cdot \text{ak}];
\]
\[
fk = 1*[0 \ k];
\]
\[
[x15,t] = fs_synth(fk, ak, 50*15, 3);
\]
\[
ylabel('x_{15}(t)'); \quad xlabel('Time (s)');
\]

• The triangle wave is continuous, so we expect the convergence of the partial sum \(x_N(t) \) to be much better than for the square wave
Convergence of Fourier Series

- For both the square wave and the triangle wave we have considered synthesis via the approximation $x_N(t)$
- We know that the approximation is not perfect, in particular for the square wave with the discontinuities, increasing N did not seem to result in that much improvement
- We can define the error between the true signal $x(t)$ and the approximation $x_N(t)$, as $e_N(t) = x(t) - x_N(t)$
- The worst case error can be defined as
\[E_{\text{worst}} = \max_{t \in [0, T_0]} |x(t) - x_N(t)| \] (3.40)

- We can then plot this for various \(N \) values

Square Wave Worst Case Error

Error with 1st through 7th Harmonics

- For the square wave the maximum error is always 1/2 the size of the jump, and the overshoot, either side of the jump, is always 9% of the jump

Time–Frequency Spectrum

- The past modeling and analysis has dealt with signals having parameters such as amplitude, frequency, and phase that do not change with time
- Most real world signals have parameters, such as frequency, that do change with time
• Speech and music are prime examples in our everyday life

Stepped Frequency

• A piano has 88 keys, with 12 keys per octave
 – An octave corresponds to the doubling of pitch/frequency
 – From one octave to the next there are 8 pitch steps, but there are also half steps (flats and sharps)

![Piano Keyboard Diagram](image)

• A constant frequency ratio is maintained between all notes

\[r^{12} = 2 \implies r = 2^{1/12} = 1.0595 \]

• The note A above middle C is at 440 Hz (tuning fork frequency) and is key number 49 of 88, so

\[f_{\text{middle C}} = f_{C_4} = 440 \times 2^{(40-49)/12} \approx 261.6 \text{ Hz} \]

• The C one octave above middle C is at key number 52, so

\[f_{C_5} = 440 \times 2^{(52-49)/12} \approx 523.3 \text{ Hz} = 2 \times 261.6 \]

• A time-frequency plot can be used to display playing the
notes in the C-major scale

Spectrogram Analysis

- The spectrogram is used to perform a time–frequency analysis on a signal, that is a plot of frequency content versus time, for a signal that has possibly time-varying frequencies.

- When using MATLAB’s signal processing toolbox, the function specgram() and spectrogram() are available for this purpose:
 - The spfirst toolbox also has the function plotspec()
 - Both specgram() and plotspec() plot frequency versus time, whereas spectrogram() plots time versus frequency.
 - The basic function interface to specgram() and plotspec is:

    ```
    >> specgram(x,N_window,fsamp)
    >> plotspec(x,N_window,fsamp)
    ```

 where N_window is the length of the spectrum analysis window, typically 256, 512, or 1024, depending upon the desired frequency resolution and the rate at which the frequency content is changing.
Example: C–Major Scale

- The MATLAB function `C_scale.m`, given below, is used to create the C–major scale running from middle C to one octave above middle C

```matlab
function [x,t] = C_scale(fs,note_dur)
% [x,t_final] = C_scale()
%
% Mark Wickert
%
% Generate octave middle C
pitch = [262 294 330 349 392 440 494 523];
N_pitch = length(pitch);

% Create a vector of frequencies
f = pitch(1)*ones(1,fix(note_dur*fs));
for k=2:N_pitch
    f = [f pitch(k)*ones(1,fix(note_dur*fs))];
end

% Generate a vector of times
% t = [0:length(f)-1]/fs;
x = cos(2*pi*f.*t);

% We now call the function and plot the results using the specgram function
>> [x,t] = C_scale(8000,.5);
>> specgram(x,1024,8000);
>> axis([0 4 0 1000]) % reduce the frequency axis
```
In this example the note duration is 0.5 s.

There is also a large smear of spectral information seen as the scale progression steps from note-to-note.

This is due to the way the spectrogram is computed:

- The analysis window straddles note changes, so a transient is captured where the pitch is jumping from one frequency to the next.
Frequency Modulation: Chirp Signals

In the previous example we have seen how a sinusoidal waveform can have time varying frequency by stepping the frequency. Frequency modulation or angle modulation, provides another view on this subject within a particular mathematical framework.

Chirped or Linearly Swept Frequency

- A chirped signal is created when we sweep the frequency, according to some function, from a starting frequency to an ending frequency.
- A constant frequency sinusoid is of the form

\[x(t) = \text{Re}\{Ae^{j(\omega_0 t + \phi)}\} = A\cos(\omega_0 t + \phi) \]

(3.41)

- The argument of (3.41) is a time varying angle, \(\psi(t) \), that is composed a linear term and a constant, i.e.,

\[\psi(t) = \omega_0 t + \phi = 2\pi f_0 t + \phi \]

(3.42)

- The units of \(\psi(t) \) is radians
- If we differentiate \(\psi(t) \) we obtain the instantaneous frequency

\[\omega_i(t) = \frac{d\psi(t)}{dt} = \omega_0 \text{ rad/s} \]

(3.43)

or by dividing by \(2\pi \) the instantaneous frequency in Hz
Frequency Modulation: Chirp Signals

\[f_i(t) = \frac{1}{2\pi} \frac{d\psi(t)}{dt} = f_0 \text{ Hz} \]
(3.44)

- The function \(\psi(t) \) can take on different forms, but in particular it may be quadratic, i.e.,

\[\psi(t) = 2\pi\mu t^2 + 2\pi f_0 t + \phi \text{ rad} \]
(3.45)

which has corresponding instantaneous frequency

\[f_i(t) = 2\mu t + f_0 \text{ Hz} \]
(3.46)

- In this case we have a linear chirp, since the instantaneous frequency varies linearly with time

Example: Chirping from 100 to 1000 Hz in 1 s

- The beginning and ending times are \(t_1 = 0 \text{ s} \) and \(t_2 = 1 \text{ s} \)
- We need to have

\[f_i(0) = f_0 = 100 \text{ Hz} \]
\[f_i(1) = 2\mu \cdot 1 + 100 = 1000 \text{ Hz} \]
(3.47)

so \(\mu = 900/2 = 450 \)

- Finally,

\[f_i(t) = 900t + 100 \text{ Hz} , \ 0 \leq t \leq 1 \text{ s} \]
(3.48)

- The phase, \(\psi(t) \), is

\[\psi(t) = 2\pi \cdot 450t^2 + 2\pi \cdot 100t + \phi \text{ rad} \]
(3.49)

- We can implement this in MATLAB as follows:

\[\gg t = 0:1/8000:1; \]
• Using the `specgram` function we can obtain the time–frequency relationship

```matlab
>> specgram(x,512,8000);
```
Summary

- The spectral representation of signals composed of sums of sinusoids was the main focus of this chapter.
- The two-sided line spectra is the means to graphically display the spectra.
- The concept of fundamental period and frequency was introduced, along with harmonic number.
- The Fourier series was found to be a power tool for both analysis and synthesis of periodic signals.
• For sinusoids with time-varying parameters, in particular frequency, the spectrogram is a useful graphical display tool
• Stepped frequency signals, such as a scale being played on a keyboard, is particularly clear when viewed as a spectrogram
• Frequency modulation, in particular linear chirp signals were briefly introduced