MATLAB Basics and More

 Scalars, Vectors, and Matrices

• MATLAB was originally developed to be a *matrix laboratory*

• In its present form it has been greatly expanded to include many other features, but still maintains inherent matrix and vector based arithmetic at its core

• The basic *data structure* of MATLAB is the matrix

\[
A = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{bmatrix},
B = \begin{bmatrix}
 b_{11} & b_{12}
\end{bmatrix}
\]

\[
C = \begin{bmatrix}
 c_{11} \\
 c_{21}
\end{bmatrix},
D = \begin{bmatrix}
 d_{11}
\end{bmatrix}
\]

– A matrix with a single row is also known as a *row vector*

– A matrix with a single column is also known as a *column vector*

– A matrix with just one row and one column (a single element) is simply a scalar
Variable Initialization

- Variable names in MATLAB
 - Must be begin with a letter
 - May contain digits and the underscore character
 - May be any length, but must be unique in the first 19 characters

- A common way to create a matrix instance is by simply assigning a list of numbers to it, e.g.,

  ```matlab
  A = [3.1415]; % A 1x1 matrix
  B = [23, 35.3]; % A 1x2 matrix
  C = [1, 2, 3; 4, 5, 6; 7, 8, 9]; % a 3x3 matrix
  ```

 - Note: a comma or a blank is used to separate elements in the same row, while a semicolon is used to separate rows

 - The assignment statements listed above are terminated with a semicolon to suppress MATLAB from echoing the variables value

- To continue one line into another we can break a line where a comma occurs, and then follow the comma with an ellipsis (three periods in a row), e.g.,

  ```matlab
  M = [.1, .2, .3, .4, .5, .6, .7, .8, .9, 1.0]; % or break the line
  M = [.1, .2, .3, .4, .5, ...
  .6, .7, .8, .9, 1.0];
  ```

- One matrix may be used to define another matrix, e.g.,

  ```matlab
  A = [4, 5, 6];
  B = [1, 2, 3, A]; % creates
  B = [1, 2, 3 ,4 ,5 ,6];
  ```
The Colon Operator

- To make matrix generation and addressing easier we use the colon operator
- The colon operator is indeed powerful, and mastering it is essential to becoming a MATLAB expert

 - Here we use it to generate row vectors
 \[
 k = 0:6; \quad k = [0, 1, 2, 3, 4, 5, 6];
 t = 0:.25:2; \quad t = [0, .25, .5, .75, 1, 1.25, 1.5, 1.75, 2];
 s = -10:2:0; \quad s = [-10, -8, -6, -4, -2, 0];
 \]

 - Here we use it to generate row and column slices of a matrix
 \[
 A = \begin{bmatrix}
 1 & 2 & 3 \\
 4 & 5 & 6 \\
 7 & 8 & 9 \\
 \end{bmatrix}
 \]
 \[
 A_{\text{col2}} = A(:,2); \quad \text{Span all rows with the column index fixed at 2.}
 A_{\text{row1}} = A(1,:); \quad \text{With row index fixed at 1, span all columns.}
 A_{11} = A(2,2); \quad \text{Produces the scalar } A_{11} = 5
 \]

- We can combine the techniques to extract a submatrix of \(A \)
 \[
 A_{\text{sub}} = A(2:3,2:3) \quad \text{% Extract a sub matrix consisting of rows 2-3 and columns 2-3}
 \]
Appendix A • MATLAB Basics and More

\[A_{sub} = \begin{bmatrix} 5 & 6 \\ 8 & 9 \end{bmatrix} \]

- We can swap the rows and columns of a matrix using the \textit{transpose operator}, e.g.,
 \begin{verbatim}
 A = [1, 2, 3];
 A_transpose = A'; % produces
 A_transpose = [1; 2; 3];
 \end{verbatim}

- A simple formatting scheme to have MATLAB display the values of several equal length vectors side-by-side is the following (actual MATLAB command line interaction)
 \begin{verbatim}
 >> A = [0, 1, 2, 3, 4];
 >> B = [0, 1, 4, 9, 16];
 >> C = [0, 1, 8, 27, 64];
 >> % Display in side-by-side columns:
 >> [A' B' C'] % commas may be included but not needed
 ans =
 0 0 0
 1 1 1
 2 4 8
 3 9 27
 4 16 64
 \end{verbatim}

Special Values and Matrices

- To make life easier, MATLAB comes with several predefined values and matrix generators
 - \texttt{pi} represents \(\pi \) in MATLAB floating point precision, e.g.,
 \begin{verbatim}
 >> pi
 ans = 3.1416
 \end{verbatim}
- $i, \ j$ represents the value $\sqrt{-1}$
- Inf is the MATLAB notation for infinity, i.e., $1/0$
- Nan is the MATLAB representation for not-a-number; often a result of a $0/0$ operation
- clock displays the current time, e.g.,
 >> clock
 ans =
 1.0e+003 *
 1.9970 0.0080 0.0270 0.0230 0.0160 0.0508
- date is the current date in a string format
 >> date
 ans = 23-Aug-2006
- eps is the smallest floating-point number by which two numbers can differ, e.g.,
 >> eps
 ans = 2.2204e-016

• A matrix of zeros can be generated with

 A_3x3 = zeros(3,3); % or
 A_3x3 = zeros(3);
 B_3x2 = ones(3,2);
 C_3x3 = ones(size(A_3x3));
In linear algebra the identity matrix is often needed

\[A_{3\times3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad B_{3\times2} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} \]

\[C_{3\times3} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \]

- User Prompting

- In the future we will write MATLAB programs or script files (saved as *.m files)

- Short of making a full graphical user interface (GUI) MATLAB program, which MATLAB can also do, we may simply wish to prompt the user to supply some input data

- When the following is encountered in a MATLAB program, the variable on the left is assigned the value the user enters at the MATLAB prompt

 \[x = \text{input('Please enter your height and weight: ')}; \]
– We create a simple script file (more on this in the next chapter) `user_prompt`

```matlab
% the *.m file user_prompt.m

x = input('Please enter your height and weight: ');
```

– To run the script we type the file name at the MATLAB prompt (making sure the file is in the MATLAB path)

```matlab
>> clear % clear all variables from the workspace
>> user_prompt % run the script file user_prompt.m
Please enter your height and weight: [100 200]
>> x
x =
    100   200
```

Output Display/Print Formatting

- Globally the display format for the command window can be changed by:
 - Typing commands directly, e.g.,
    ```matlab
    format short % four decimal digits
    format long % 14 decimal digits
    format short e % short with scientific notation
    format long e % long with scientific notation
    % others available
    ```
Selecting displays formats from the command window pull down menus, e.g.,

- Formatted output from script files is also possible, that is the format of variables printed to the screen can be made unique for each variable you want the program to print, and custom text be distributed around the numeric values.

- The command `disp()` is used to display text and print the contents of a matrix

```matlab
>> disp('A Text String to Display.')
A Text String to Display.
>> M = [1, 2; 3, 4];
>> disp(M)
  1   2
  3   4
```
The x–y Plot Command

- A fully customizable way of printing both text and matrices is the `fprintf()` command

  ```matlab
  fprintf(format_string,matrices)
  ```

- The format string contains text you wish to display along with `format specifiers`, `%e`, `%f`, and `%g`, which tell `fprintf` how to display respective values in the matrices list
 - `%e`, `%f`, and `%g` select exponential, fixed point, or global (either `%f` or `%e` which ever is smaller)
 - `\n` tells MATLAB to start a new line

```
>> A = 24.567;
>> fprintf('Hello, we have A = %f and pi =%6.4f.\n',... 
          A,pi)
Hello, we have A = 24.567000 and pi = 3.1416.
```

The x–y Plot Command

- A simple y versus x plot is obtained with the command `plot(x,y)`

- To address a specific figure window type `figure(1)`, etc.

- Plots without a title and axis labels are uninformative, so we must also add labels
  ```matlab
  >> x = [0, 1, 2, 3, 4, 5, 6,7,8];
  >> y = [0, 1, 4, 9, 16, 25,36,49,64];
  >> plot(x,y)
  >> grid
  >> title('The Plot of y = x^2')
  >> ylabel('The y axis')
  >> xlabel('The x axis')
  ```
Data File Commands

- Data file commands are used to save and load files in either standard ASCII text or the more compact MATLAB binary format which uses the *.mat extension.

- The binary .mat format is useful for files which will be used with MATLAB, while the ASCII format is useful when working with other programs, or sharing data with others who may not have MATLAB.
>> x = 0:5;
>> y = rand(size(x));
>> [x' y']
ans =
 0 0.3529
 1.0000 0.8132
 2.0000 0.0099
 3.0000 0.1389
 4.0000 0.2028
 5.0000 0.1987

To verify that these files are valid we first clear the MATLAB work space using the command clear

>> clear
>> whos

Next we load the .mat file back into the work space

>> load mat_data
>> whos

To see how the ASCII file is loaded we again clear the work space

>> load mat_data.dat
>> whos

Data File Commands

To verify that these files are valid we first clear the MATLAB work space using the command clear

>> clear
>> whos

Next we load the .mat file back into the work space

>> load mat_data
>> whos

To see how the ASCII file is loaded we again clear the work space

>> load mat_data.dat
>> whos

ECE 2610 Signals and Systems
• When loading an ASCII file we simply place each row of the text file into a corresponding matrix row

• The variable name that holds the loaded text file is in this case `mat_data`
 - To recover the data vectors x and y from `mat_data` we must parse them out using the colon operator; left as an exercise

Scalar and Array Operations

Computations in MATLAB typically require wide variety of arithmetic computations between scalars, vectors, and matrices.

Scalar Operations

• Scalar operations are the most obvious if you have programmed in C, Fortran, Basic, etc.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Algebraic Form</th>
<th>MATLAB syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>addition</td>
<td>$a + b$</td>
<td><code>a + b</code></td>
</tr>
<tr>
<td>subtraction</td>
<td>$a - b$</td>
<td><code>a - b</code></td>
</tr>
<tr>
<td>multiplication</td>
<td>$a \times b$</td>
<td><code>a*b</code></td>
</tr>
<tr>
<td>division</td>
<td>$a \div b$</td>
<td><code>a/b</code></td>
</tr>
<tr>
<td>exponentiation</td>
<td>a^b</td>
<td><code>a^b</code></td>
</tr>
</tbody>
</table>

Table A.1: Simple scalar operations
% Assign constants to a and b:
>> a = 3.1; b = 5.234;
>> c = a + b
c = 8.3340
>> c = a/b
c = 0.5923
>> c = a^b
c = 373.0672

Array Operations

- When working with vectors and matrices we have the choice of performing operations element-by-element or according to the rules of matrix algebra.
- In this section we are only interested in element-by-element operations.
- Basically element-by-element operations on vectors and matrices are the same as those of Table A.2, except ‘.’ must be added before the operator.

Table A.2: Vector and Matrix element-by-element operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Algebraic Form</th>
<th>MATLAB syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>addition</td>
<td>$a + b$</td>
<td>a + b</td>
</tr>
<tr>
<td>subtraction</td>
<td>$a - b$</td>
<td>a - b</td>
</tr>
<tr>
<td>multiplication</td>
<td>$a \times b$</td>
<td>a.*b</td>
</tr>
<tr>
<td>division</td>
<td>$a \div b$</td>
<td>a./b</td>
</tr>
<tr>
<td>exponentiation</td>
<td>a^b</td>
<td>a.^b</td>
</tr>
</tbody>
</table>
Another related case is when a scalar operates on a vector or matrix

In this case the scalar is applied to each vector or matrix element in a like fashion

Examples:

```matlab
>> A = [1 3 5 7]
A =     1     3     5     7
>> B = 2*A % Scalar operating on a vector
B =     2     6    10    14
>> B = 2.*A
B =     2     6    10    14
>> C = B./A % Vector-to-vector point wise
C =     2     2     2     2
>> D = A.^3
D =     1    27   125   343
```

Operator Precedence

- The order in which expressions are evaluated in MATLAB is fixed according to Table A.3

<table>
<thead>
<tr>
<th>Precedence</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>parenthesis, innermost first</td>
</tr>
<tr>
<td>2</td>
<td>exponentiation, left to right</td>
</tr>
<tr>
<td>3</td>
<td>multiplication and division, left to right</td>
</tr>
<tr>
<td>4</td>
<td>addition and subtraction, left to right</td>
</tr>
</tbody>
</table>

- As long as there are matching left and right parenthesis there
is no danger in *over doing it*; the parenthesis help insure that operations are done in the proper order

Example: Find the area of the following shape

- There are several ways to solve this problem, but one that comes to mind is to find the area to the square and then subtract the area of the two right triangles
 - Recall that the area of a triangle is \(\frac{1}{2} \) base \(\cdot \) height

 \[
 \text{Area} = (15 \times 15) - \left[\frac{1}{2} (15 - 4) \cdot 11 + \frac{1}{2} (15 - 6) \cdot 9 \right]
 \]

 - Code in MATLAB as follows:

 \[
 \text{Area} = (15 \times 15) - \left[\frac{1}{2} (15 - 4) \cdot 11 + \frac{1}{2} (15 - 6) \cdot 9 \right]
 \]

 \[
 \text{Area} = 124
 \]

Numerical Limitations

- The usable range of numbers MATLAB can work with is
from 10^{-308} to 10^{308}

- If overflow (number too large) occurs MATLAB indicates a result of \texttt{Inf}, meaning infinity
- If underflow (number too small) occurs MATLAB indicates a result of 0

Example:

```matlab
>> a = 5.00e200; % same as $5 \times 10^{200}$
>> b = 3.00e150; % same as $3 \times 10^{150}$
>> a*b
   ans =   Inf % should be $15.0 \times 10^{350}$
>> 1/a * 1/b
   ans =     0 % should be $(1/5) \times (1/3) \times 10^{-350}$
```

- Other special cases occur when the conditions of nearly something $/0 \rightarrow \infty$ or $0/0 \rightarrow$ occur
- For the first case MATLAB gives an error message of divide by zero and returns \texttt{Inf}
- In the second case MATLAB gives an error message of divide by zero and returns \texttt{NaN}

Example:

```matlab
>> 1e-30/1e-309 %according to MATLAB like somthing/0
   Warning: Divide by zero.
   ans =   Inf %IEEE notation for ‘infinity’
>> 1e-309/1e-309 %according to MATLAB like 0/0
   Warning: Divide by zero.
   ans =   NaN %IEEE notation for ‘not a number’
```
Additional Plot Types and Plot Formatting

- The \(xy \) plot is the most commonly used plot type in MATLAB.
- Engineers frequently plot either a measured or calculated dependent variable, say \(y \), versus an independent variable, say \(x \).
- MATLAB has a huge array of graphics functions and there are many variations and options associated with \texttt{plot()}.
 - To find out more type: \texttt{>> help plot}

Special Forms of Plot

- Linear axes for both \(x \) and \(y \) are not always the most useful.
- Depending upon the functional form we are plotting we may wish to use a logarithmic scale (base 10) for \(x \) or \(y \), or both axes.
 - When a log axes is used the variable may range over many orders of magnitude, yet still show detail at the smaller values.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{plot(x,y)}</td>
<td>Linear plot of (y) versus (x)</td>
</tr>
<tr>
<td>\texttt{semilogx(x,y)}</td>
<td>Linear (y) versus log of (x)</td>
</tr>
<tr>
<td>\texttt{semilogy(x,y)}</td>
<td>Log of (y) versus linear of (x)</td>
</tr>
<tr>
<td>\texttt{loglog(x,y)}</td>
<td>Log of (y) versus log of (x)</td>
</tr>
</tbody>
</table>
Example: Plotting $y = x^2$ for $0 \leq x \leq 20$

```matlab
>> x = 0:.5:20;
>> y = x.^2;
>> subplot(2,2,1) % address plot in row 1/column 1
>> plot(x,y),grid,title('y = x^2 as linear/linear')
>> subplot(2,2,2) % address plot in row 1/column 21
>> semilogx(x,y),grid,title('y = x^2 as linear/log')
>> subplot(2,2,3) % address plot in row 2/column 1
>> semilogy(x,y),grid,title('y = x^2 as log/linear')
>> subplot(2,2,4) % address plot in row 2/column 2
>> loglog(x,y),grid,title('y = x^2 as log/log')
>> % Below we export the graphic as encapsulated
>> % postscript with a tiff bitmap overlay
>> print -depsc -tiff quad_plot.eps
```
Multiple (Overlay) Plots

- Using the basic command `plot()` we can easily plot multiple curves on the same graph.
- The most direct way is to simply supply `plot()` with additional arguments, e.g.,
 \[
 \text{plot}(x_1,y_1,x_2,y_2,\ldots)
 \]
- Another way is to use the `hold` command
 \[
 \text{plot}(x_1,y_1) \\
 \text{hold} \quad \% \text{turns plot holding on for the current figure} \\
 \text{plot}(x_2,y_2) \\
 \text{hold} \quad \% \text{turns plot holding off for current figure}
 \]

Example: Plotting a family of polynomials, say

\[
y = x^n, -1 \leq x \leq 1
\]

for \(n = 1, 2, 3, 4 \)

```matlab
>> x = -1:.01:1;
>> plot(x,x),axis('square'),grid
>> hold
Current plot held
>> plot(x,x.^2)
>> plot(x,x.^3)
>> plot(x,x.^4)
>> title('Plots of y = x^n for n = 1, 2, 3, & 4', ... 
     'fontsize',16)
>> ylabel('y','fontsize',14), xlabel('x','fontsize',14)
>> print -depsc -tiff powers.eps
```
Line and Mark Styles

- A wide variety of line and mark styles can be obtained by including a character string argument to `plot()`

\[
\text{plot}(x, y, s)
\]

where `s` is a character string (‘a string’) composed of at most one element from each column of Table A.5

- The basic variations are line color, line style, and mark styles
Multiple (Overlay) Plots

As an example,

\[\text{plot}(x, y, 'c+:') \]

plots a cyan dotted line with a plus at each data point, while

\[\text{plot}(x, y, 'bd') \]

plots blue diamond at each data point but does not draw any line.

Table A.5: Graphics line style, line color, and mark options

<table>
<thead>
<tr>
<th>Line Color</th>
<th>Marker (symbol) Style</th>
<th>Line Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>yellow</td>
<td>. point</td>
<td>-- solid</td>
</tr>
<tr>
<td>magenta</td>
<td>o circle</td>
<td>: dotted</td>
</tr>
<tr>
<td>cyan</td>
<td>x x-mark</td>
<td>-- . dashdot</td>
</tr>
<tr>
<td>red</td>
<td>+ plus</td>
<td>-- -- dashed</td>
</tr>
<tr>
<td>green</td>
<td>* star</td>
<td></td>
</tr>
<tr>
<td>blue</td>
<td>s square</td>
<td></td>
</tr>
<tr>
<td>white</td>
<td>d diamond</td>
<td></td>
</tr>
<tr>
<td>black</td>
<td>v triangle (down)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>^ triangle (up)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>< triangle (left)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>> triangle (right)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p pentagram</td>
<td></td>
</tr>
<tr>
<td></td>
<td>h hexagram</td>
<td></td>
</tr>
</tbody>
</table>
Example: Plotting a family of polynomials (continued). Here we will improve upon a previous multiple plot by coding the line types using markers (symbols) and MATLAB’s `legend` command.

```matlab
>> x = -1:.01:1;
>> plot(x,x),axis('square'),grid
>> hold
Current plot held
>> plot(x,x.^2,'--')
>> plot(x,x.^3,':')
>> plot(x,x.^4,'-.')
>> legend('y = x','y = x^2','y = x^3','y = x^4')
>> title('Plots of y = x^n for n = 1, 2, 3, & 4','fontsize',16)
>> ylabel('y','fontsize',14)
>> xlabel('x','fontsize',14)
>> print -depsc -tiff powers_leg.eps
```
Axis Scaling

- When creating plots in MATLAB the axes are initially automatically scaled
- Sometimes custom axis scaling is more desirable
- The `axis` command, which has a large variety of options (type `help axis`), allows the axis scaling to be changed following graph generation via

  ```matlab
  axis([x_min,x_max,y_min,y_max]);
  ```
- Another useful command in this area is `zoom` command
– The zoom command allows the user to zoom into an area of an existing graph by drawing a zoom rectangle with the mouse
– To turn zoom off for a particular figure window you type `zoom` again

Subplots

- The `subplot` command allows a given figure window in MATLAB to be broken into a rectangular array of plots, each addressed with the standard plot commands
- The command `subplot(m,n,p)` or `subplot(mnp)` splits the graph (figure) window into an array of plots m-rows by n-columns, and addresses the pth subplot
 - The subplot index p counts from left to right beginning with the upper left plot and ending with the lower right plot

![A 2x2 Array of Subplots](image)

- The example on page A-18 uses the `subplot` command
Mathematical Functions

Common Math Functions

Table A.6: Common math functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs(x)</td>
<td></td>
<td>sqrt(x)</td>
<td>√x</td>
</tr>
<tr>
<td>round(x)</td>
<td>nearest integer</td>
<td>fix(x)</td>
<td>nearest integer</td>
</tr>
<tr>
<td>floor(x)</td>
<td>nearest integer</td>
<td>ceil(x)</td>
<td>nearest integer</td>
</tr>
<tr>
<td></td>
<td>toward −∞</td>
<td></td>
<td>toward ∞</td>
</tr>
</tbody>
</table>
| sign(x) | \[
| | \begin{cases}
| | -1, x < 0 \\n| | 0, x = 0 \\n| | 1, x > 0
| | \end{cases}
| | rem(x, y) | | the remainder of x/y |
| exp(x) | e^x | log(x) | natural log ln x |
| log10(x) | log base 10 | | |
| | log_{10}x | | |

Examples:

```matlab
>> x = [-5.5 5.5];
>> round(x)
ans =    -6     6
>> fix(x)
ans =    -5     5
>> floor(x)
ans =    -6     5
>> ceil(x)
```
ans = -5 6
>> sign(x)
an = -1 1
>> rem(23,6)
an = 5

Trigonometric and Hyperbolic Functions

- Unlike pocket calculators, the trigonometric functions always assume the input argument is in radians
- The inverse trigonometric functions produce outputs that are in radians

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sin(x)</td>
<td>sin(x)</td>
<td>cos(x)</td>
<td>cos(x)</td>
</tr>
<tr>
<td>tan(x)</td>
<td>tan(x)</td>
<td>asin(x)</td>
<td>sin⁻¹(x)</td>
</tr>
<tr>
<td>acos(x)</td>
<td>cos⁻¹(x)</td>
<td>atan(x)</td>
<td>tan⁻¹(x)</td>
</tr>
<tr>
<td>atan2(y, x)</td>
<td>the inverse tangent of (y/x) including the correct quadrant</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples:

- A simple verification that \(\sin^2(x) + \cos^2(x) = 1 \)
\[x = 0:pi/10:pi; \]
\[\begin{bmatrix} x' & \sin(x)' & \cos(x)' & (\sin(x).^2 + \cos(x).^2)' \end{bmatrix} \]
\[
\begin{array}{cccc}
0 & 0 & 1.0000 & 1.0000 \\
0.3142 & 0.3090 & 0.9511 & 1.0000 \\
0.6283 & 0.5878 & 0.8090 & 1.0000 \\
0.9425 & 0.8090 & 0.5878 & 1.0000 \\
1.2566 & 0.9511 & 0.3090 & 1.0000 \\
1.5708 & 1.0000 & 0.0000 & 1.0000 \\
1.8850 & 0.9511 & -0.3090 & 1.0000 \\
2.1991 & 0.8090 & -0.5878 & 1.0000 \\
2.5133 & 0.5878 & -0.8090 & 1.0000 \\
2.8274 & 0.3090 & -0.9511 & 1.0000 \\
3.1416 & 0.0000 & -1.0000 & 1.0000 \\
\end{array}
\]

- Parametric plotting:
 - Verify that by plotting \(\sin \theta \) versus \(\cos \theta \) for \(0 \leq \theta \leq 2\pi \) we obtain a circle

\[
\theta \quad \sin \theta \quad \cos \theta
\]

\[
\begin{array}{cccc}
\theta & \sin \theta & \cos \theta & (\sin \theta)^2 + (\cos \theta)^2 \\
0 & 0 & 1.0000 & 1.0000 \\
0.3142 & 0.3090 & 0.9511 & 1.0000 \\
0.6283 & 0.5878 & 0.8090 & 1.0000 \\
0.9425 & 0.8090 & 0.5878 & 1.0000 \\
1.2566 & 0.9511 & 0.3090 & 1.0000 \\
1.5708 & 1.0000 & 0.0000 & 1.0000 \\
1.8850 & 0.9511 & -0.3090 & 1.0000 \\
2.1991 & 0.8090 & -0.5878 & 1.0000 \\
2.5133 & 0.5878 & -0.8090 & 1.0000 \\
2.8274 & 0.3090 & -0.9511 & 1.0000 \\
3.1416 & 0.0000 & -1.0000 & 1.0000 \\
\end{array}
\]
The trig functions are what you would expect, except the features of $\text{atan2}(y, x)$ may be unfamiliar.

\begin{align*}
\phi_1 &= 0.4636 \\
\phi_2 &= -2.0344
\end{align*}
The hyperbolic functions are defined in terms of e^x

Table A.8: Hyperbolic functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sinh(x)</td>
<td>$\frac{e^x - e^{-x}}{2}$</td>
<td>cosh(x)</td>
<td>$\frac{e^x + e^{-x}}{2}$</td>
</tr>
<tr>
<td>tanh(x)</td>
<td>$\frac{e^x - e^{-x}}{e^x + e^{-x}}$</td>
<td>asinh(x)</td>
<td>$\ln(x + \sqrt{x^2 + 1})$</td>
</tr>
<tr>
<td>acosh(x)</td>
<td>$\ln(x + \sqrt{x^2 - 1})$</td>
<td>atanh(x)</td>
<td>$\ln \frac{1 + x}{\sqrt{1 - x}},</td>
</tr>
</tbody>
</table>

There are no special concerns in the use of these functions except that atanh requires an argument that must not exceed an absolute value of one.

Complex Number Functions

Before discussing these functions we first review a few facts about complex variable theory.

In electrical engineering complex numbers appear frequently.

A complex number is an ordered pair of real numbers

denoted \((a, b)\)

- The first number, \(a\), is called the real part, while the second number, \(b\), is called the imaginary part

- For algebraic manipulation purposes we write \((a, b) = a + ib = a + jb\) where \(i = j = \sqrt{-1}\); electrical engineers typically use \(j\) since \(i\) is often used to denote current

Note: \(\sqrt{-1} \times \sqrt{-1} = -1 \Rightarrow j \times j = -1\)

- For complex numbers \(z_1 = a_1 + jb_1\) and \(z_2 = a_2 + jb_2\) we define/calculate

\[
z_1 + z_2 = (a_1 + a_2) + j(b_1 + b_2) \quad \text{(sum)}
\]

\[
z_1 - z_2 = (a_1 - a_2) + j(b_1 - b_2) \quad \text{(difference)}
\]

\[
z_1 z_2 = (a_1 a_2 - b_1 b_2) + j(a_1 b_2 + b_1 a_2) \quad \text{(product)}
\]

\[
\frac{z_1}{z_2} = \frac{(a_1 a_2 + b_1 b_2) - j(a_1 b_2 - b_1 a_2)}{a_2^2 + b_2^2} \quad \text{(quotient)}
\]

\[
|z_1| = \sqrt{a_1^2 + b_1^2} \quad \text{(magnitude)}
\]

\[
\angle z_1 = \tan^{-1}(b_1 / a_1) \quad \text{(angle)}
\]

\[
z_1^* = a_1 - jb_1 \quad \text{(complex conjugate)}
\]

- MATLAB is consistent with all of the above, starting with the fact that \(i\) and \(j\) are predefined to be \(\sqrt{-1}\)
• The *rectangular form* of a complex number is as defined above,

\[z = (a, b) = a + jb \]

• The corresponding *polar form* is

\[z = r \angle \theta \]

where \(r = \sqrt{a^2 + b^2} \) and \(\theta = \tan^{-1}(b/a) \)

MATLAB has five basic complex functions, but in reality most all of MATLAB’s functions accept complex arguments and deal with them correctly.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>conj(x)</code></td>
<td>Computes the conjugate of (z = a + jb) which is (z^* = a - jb)</td>
</tr>
<tr>
<td><code>real(x)</code></td>
<td>Extracts the real part of (z = a + jb) which is (\text{real}(z) = a)</td>
</tr>
</tbody>
</table>
Euler’s Formula: A special mathematical result, of special importance to electrical engineers, is the fact that

\[e^{jb} = \cos b + j \sin b \]
\[(A.1) \]

- Turning (3.1) around yields

\[\sin \theta = \frac{e^{j\theta} - e^{-j\theta}}{2j} \]
\[(A.2) \]
\[\cos \theta = \frac{e^{j\theta} + e^{-j\theta}}{2} \]
\[(A.3) \]

- It also follows that

\[z = a +jb = re^{j\theta} \]
\[(A.4) \]

where

\[r = \sqrt{a^2 + b^2}, \theta = \tan^{-1} \frac{b}{a}, a = r \cos \theta, b = r \sin \theta \]
• Some examples:

\[
\begin{align*}
&>>> \text{z1} = 2 + j \times 4; \text{z2} = -5 + j \times 7; \\
&>> [\text{z1} \ \text{z2}] \\
&\text{ans} = \\
&\quad 2.0000 + 4.0000i \quad -5.0000 + 7.0000i \\
&>> [\text{real(z1)} \ \text{imag(z1)} \ \text{abs(z1)} \ \text{angle(z1)}] \\
&\text{ans} = \\
&\quad 2.0000 \quad 4.0000 \quad 4.4721 \quad 1.1071 \\
&>> [\text{conj(z1)} \ \text{conj(z2)}] \\
&\text{ans} = \\
&\quad 2.0000 - 4.0000i \quad -5.0000 - 7.0000i \\
&>> [\text{z1+z2} \ \text{z1-z2} \ \text{z1*z2} \ \text{z1/z2}] \\
&\text{ans} = \\
&\quad -3.0000 + 11.0000i \quad 7.0000 - 3.0000i \\
&\quad -38.0000 - 6.0000i \quad 0.2432 - 0.4595i
\end{align*}
\]

Polar Plots: When dealing with complex numbers we often deal with the polar form. The plot command which directly plots vectors of magnitude and angle is \texttt{polar(theta,r)}

• This function is also useful for general plotting

• As an example the equation of a cardioid in polar form, with parameter \(a\), is

\[
r = a(1 + \cos \theta), \ 0 \leq \theta \leq 2\pi
\]

\[
\begin{align*}
&>> \text{theta} = 0:2*\text{pi}/100:2*\text{pi}; \ \% \text{Span 0 to 2pi with 100 pts} \\
&>> \text{r} = 1+\text{cos(theta)}; \\
&>> \text{polar(theta,r)}
\end{align*}
\]
Roots of Polynomials

- Recall that the roots of \(y = f(x) \) are those values of \(x \) where \(f(x) = 0 \)
- For polynomials with real number coefficients, the roots may be real numbers and/or pairs of complex conjugate numbers
 - For a third-order polynomial the roots may be either three real roots or one real root and a complex pair
 - For a second-order polynomial the roots may be either two
real roots or a complex conjugate pair

- If we plot \(f(x) \) we find that the real roots correspond to those locations where the polynomial crosses the \(x \)-axis
- Recall that for a quadratic \(y(x) = a_0x^2 + a_1x + a_2 \) the roots are (quadratic formula)

\[
r_1, r_2 = \frac{-a_1 \pm \sqrt{a_1^2 - 4a_0a_2}}{2a_0}
\]

Note: The roots are complex if \(4a_0a_2 > a_1^2 \)

- Hand calculation of polynomial roots becomes impractical as the order increases, hence we often turn to a numerical solution
- The MATLAB function \texttt{roots(a)} finds the roots of a polynomial with coefficient vector \(a \)

Example: \(f(x) = 2x^4 + 5x^3 + 10x^2 + 7x + 6 \)

\[
\begin{align*}
\text{>> } & p = [2 \ 5 \ 10 \ 7 \ 6]; \\
\text{>> } & r = \text{roots}(p) \\
& r = \\
& -1.0000 + 1.4142i \\
& -1.0000 - 1.4142i \\
& -0.2500 + 0.9682i \\
& -0.2500 - 0.9682i \\
\text{>> } & \text{polyval}(p,r) \% \text{ Check by evaluating } p \\
& \% \text{ at the root locations} \\
& \text{ans = } 1.0e-013 * \\
& -0.1243 + 0.0089i \\
& -0.1243 - 0.0089i
\end{align*}
\]
-0.0533 + 0.0355i
-0.0533 - 0.0355i % Functional values are small

- Given the roots of a polynomial r_1, r_2, \ldots, r_N we know that

\[
f(x) = a_0x^N + a_2x^{N-1} + \ldots + a_{N-1}x + a_N
= (x - r_1)(x - r_2)\ldots(x - r_N)
\]

- The MATLAB function `poly(r)` effectively reconstructs the polynomial coefficient vector, a, given the vector of roots by repeated polynomial multiplication

3-D Plotting Options

- In MATLAB there are a variety of standard 3-D plotting functions; a short table is given below

<table>
<thead>
<tr>
<th>Plot Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mesh(x, y, z)</code></td>
<td>Plots a mesh type surface defined by matrix z. x and y are either vectors of the x and y range values or the corresponding grid matrices.</td>
</tr>
<tr>
<td><code>surf(x, y, z)</code></td>
<td>Plots a shaded surface defined by matrix z. x and y are as defined above</td>
</tr>
<tr>
<td><code>contour(x, y, z)</code></td>
<td>A flat map containing contour lines of the surface defined by z. x and y are as defined above. The number of contour lines is chosen automatically</td>
</tr>
</tbody>
</table>
Example: Evaluate the diffraction pattern of a square aperture

\[
z = f(x, y) = \frac{\sin(\pi x/4)}{\pi x/4} \cdot \frac{\sin(\pi y/4)}{\pi y/4}\]

\[
>> x = -10:.5:10; \ y = -10:.5:10;
>> [x_grid,y_grid] = meshgrid(x,y);
>> \% MATLAB defines \texttt{sin(pi*x)/(pi*x)} as \texttt{sinc(x)}
>> z = sinc(x_grid/4).*sinc(y_grid/4);
>> surf(x,y,abs(z)) \% Surf. plot with lighting effects
>> title('Rectangular Diffraction Pattern Magnitude',
\% ...'fontsize',16)
>> ylabel('y','fontsize',14)
>> xlabel('x','fontsize',14)
Data Analysis Functions

The analysis of data coming from analytical calculations, computer simulations, or actual experimental data, is a requirement in most all engineering projects. With MATLAB we have a powerful set of predefined data analysis, and as we will see later, we can also write custom functions as needed.
Simple Analysis

- The first group of data analysis functions to consider finds maximums, minimums, sums, and products of vectors or columns of matrices

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{max}(x))</td>
<td>Returns (y) the largest value in vector (x) or each column of (x). Optionally (k) is the index where the max occurs.</td>
<td>(\text{max}(x, y))</td>
<td>Returns a matrix full of the larger of the two values in (x) and (y) at the corresponding matrix indices.</td>
</tr>
<tr>
<td>([y, k] = \text{max}(x))</td>
<td>Same as (\text{max}(x)) except minimum.</td>
<td>(\text{min}(x, y))</td>
<td>Same as (\text{max}(x, y)) except minimum.</td>
</tr>
<tr>
<td>(\text{sum}(x))</td>
<td>The scalar (vector of column sums) (\sum_{n=1}^{N} x(n))</td>
<td>(\text{prod}(x))</td>
<td>The scalar (vector of column products) (\prod_{n=1}^{N} x(n))</td>
</tr>
</tbody>
</table>
Example:

```matlab
>> x = 0:10;
>> x_max = max(x); x_min = min(x);
>> x_sum = sum(x); x_prod = prod(x)
>> [x_max x_min x_sum x_prod]
ans =
     10     0     55     0
>> cumsum(x)
ans =
     0     1     3     6    10    15    21    28    36    45    55
>> cumprod(x)
ans =
     0     0     0     0     0     0     0     0     0     0     0
     0     0 % Why zeros?
```

Sample Statistics

- When the data we are operating on is viewed as the result of an experiment or the sampling of a *population*, then we may be interested in *sample statistics*
Flow Control Using a Selection Statement

In all programming languages there are means (usually more than one) to control the flow of the program.

- The most common means of flow control is via an `if` statement/code block.

The MATLAB `if` Statement

- The full form of the `if` code block is

```matlab
if logical_expression_#1
    statements
elseif logical_expression_#2
    statements
end
```
The general if code block shown above is very powerful, but all the features that it offers may be confusing at first, and in fact are often not used.

In flow chart form a simple flow control may be the following:

- The MATLAB code is the following:

```matlab
% some program statements
if g < 50  % Note statements inside if block are
    count = count + 1;  % indented to improve readability.
    disp(g);
end
```
disp(g);
end
%more program statements

- In an if code block decisions are made as a result of evaluating a logical expression(s), e.g.,

  ```matlab
  if logical_expression
     run_this_code
  end
  ```

 - If the logical expression is true, then the code placed between the if and end statements is evaluated, otherwise we skip over it to the first code statement following the end statement.

- Before studying more if code block examples, we will briefly study the use of relational and logical operators to construct logical expressions.

Relational and Logical Operators

Using relational operators we can construct a single logical expression. If needed, several logical expressions can be combined into one logical expression using logical operators.

- MATLAB supports six relational operators as described in Table A.13

<table>
<thead>
<tr>
<th>Operator</th>
<th>Purpose/Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><</code></td>
<td>Used to form the logical expression $a < b$ which returns 1 if true and 0 if false</td>
</tr>
</tbody>
</table>
Table A.13: Relational operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Purpose/Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td><=</td>
<td>Used to form the logical expression (a \leq b) which returns 1 if true and 0 if false</td>
</tr>
<tr>
<td>></td>
<td>Used to form the logical expression (a > b) which returns 1 if true and 0 if false</td>
</tr>
<tr>
<td>>=</td>
<td>Used to form the logical expression (a \geq b) which returns 1 if true and 0 if false</td>
</tr>
<tr>
<td>==</td>
<td>Used to form the logical expression (a = b) which returns 1 if true and 0 if false</td>
</tr>
<tr>
<td>~=</td>
<td>Used to form the logical expression (a \neq b) which returns 1 if true and 0 if false</td>
</tr>
</tbody>
</table>

- When the logical operators are used in expressions involving vectors or matrices, the returned value is a vector or matrix containing 0’s and 1’s respectively

Example: Let \(a = \begin{bmatrix} 1 & 5 & 8 \end{bmatrix} \) and \(b = \begin{bmatrix} 2 & 3 & 8 \end{bmatrix} \)

```matlab
>> a = [1 5 8]; b = [2 3 8];
>> a < b
ans =
   1 0 0
>> a > b
ans =
   0 1 0
>> a == b
ans =
   0 0 1
>> a ~= b
```
More complex logical expressions can be obtained by combining several sub expressions using the logical operators given in Table A.14

Table A.14: Logical operators

<table>
<thead>
<tr>
<th>Operator/ Symbol</th>
<th>Purpose/Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>not, ~</td>
<td>not(a) or ~a returns inverts a 1 to 0 and a 0 to a 1</td>
</tr>
<tr>
<td>and, &</td>
<td>and(a, b) or a&b returns 1 if a and b are both true (1), otherwise 0</td>
</tr>
<tr>
<td>or,</td>
<td>or(a, b) or a</td>
</tr>
<tr>
<td>xor</td>
<td>xor(a, b) returns 1 if a and b are different, otherwise 0</td>
</tr>
</tbody>
</table>

Example: Continuation of previous example

```
>> a = [1 5 8]; b = [2 3 8];
>> (a < b)
an =
    1  0  0
>> ~(a < b)
an =
    0  1  1
>> [(a < b) (a > b)]
an =
    1  0  0  0  1  0
>> (a > b) & (a < b)
```
ans =
0 0 0
>> and(a > b , a < b)
ans =
0 0 0

Example: Determine if the following expressions are true or false. Then check your answers using MATLAB.

\[a = 5.5, \ b = 1.5, \ k = -3 \]

\[\text{\texttt{>> a = 5.5; b = 1.5; k = -3;}} \]

1. \(a < 10.0 \)

 By inspection the statement \(a < 10.0 \) is true, or logical 1

 \[\text{\texttt{\textgreater{} a < 10.0}} \]

 \[\text{\texttt{ans =}} \quad 1 \]

5. \(\sim (a == 3*b) \)

 We know that \(a = 5.5 \) and \(3b = 4.5 \), thus the interior logical expression is false (logical 0), and its complement is true (logical 1)

 \[\text{\texttt{\textgreater{} a == 3*b}} \]

 \[\text{\texttt{ans =}} \quad 1 \]

7. \(a<10 \ \& \ a>5 \)

 By inspection \(a < 10 \) is true and \(a > 5 \) is true, the logical and of these to expressions is true or logical 1

 \[\text{\texttt{\textgreater{} a<10 \ \& \ a>5}} \]

 \[\text{\texttt{ans =}} \quad 1 \]

More if Code Blocks

In this section we study the `else` and `elseif` clauses that are part of the complete `if` code block, and also consider nested `if` code blocks
The stripped down `if` code block discussed earlier is useful when an operation is either performed or not performed.

When say two or more different operations are desired, depending upon a corresponding set of logical expression outcomes, we can use the full `if` code block.

Example: Suppose we want to conditionally evaluate

\[
y = \begin{cases}
2x, & x > 4 \\
0, & x = 4 \\
-5x, & \text{otherwise}
\end{cases} \tag{A.5}
\]

In flow chart form we have:

![Flow Chart Diagram](image)

In MATLAB we have:

```matlab
if x > 4
    y = 2*x;
elseif x == 4
    y = 0;
else
    y = -5*x;
end
```
The switch (case) Code Block

- New to MATLAB 5 is the switch or case code block
- Most all high level languages provide the program flow construct, so it only seems reasonable that MATLAB has adopted it as well
- The basic form of the switch statement is

```matlab
switch switch_expr
    case case_expr,
        statement, ..., statement
    case {case_expr1, case_expr2, case_expr3,...}
        statement, ..., statement
    ...
    otherwise,
        statement, ..., statement
end
```
- The basic functionality of the switch statement is to switch to the first code following a particular case statement where the switch expression and case expressions match
- The code following the otherwise statement is run only if no match is found in the above case statements
- Code execution continues following the end statement
Flow Control Using a Selection Statement

Example: Adjust program flow based on a user entered text string.

```matlab
% MATLAB script file switch_demo.m
% Demo of the Switch (Case) Code Block
input_text = ... 
    input('Enter some text in single quotes: ');
% Make sure case is not an issue:
input_text = lower(input_text);
switch input_text
    case 'yes'
        disp('You have answered the question with a yes.');
    case 'no'
        disp('You have answered the question with a no.');
    otherwise
        disp('You have not answered the question with a yes or no.');
end
```

- **Sample output**

  ```
  >> switch_demo
  Enter Some Text in single quotes: 'help'
  You have not answered the question with a yes or no.
  >> switch_demo
  Enter Some Text in single quotes: 'NO'
  You have answered the question with a no.
  ```
Example: Provide a MATLAB code block that performs the steps indicated.

2. If \(\ln(x) > 3 \) set \(\text{time} \) equal to 0 and increment \(\text{count} \) by one

   ```matlab
   if log(x) > 3
       time = 0;
       count = count + 1;
   end
   ```

4. If \(\text{dist} \geq 100.0 \) increment \(\text{time} \) by 2.0. If \(50 < \text{dist} < 100 \) increment \(\text{time} \) by 1. Otherwise increment \(\text{time} \) by 0.5.

   ```matlab
   if dist >= 100.0
       time = time + 2.0;
   elseif (dist > 50) & (dist < 100)
       time = time + 1;
   else
       time = time + 0.5;
   end
   ```

Logical Functions

- Logical functions are useful in vectorizing algorithms for efficient execution in the MATLAB environment.

- Six functions of particular interest are given in Table A.15

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>any(x)</code></td>
<td>Returns 1 if any element in (x) is nonzero, 0 otherwise. For a matrix returns a row vector whose elements are 1 if the corresponding column of (x) contains any nonzero element.</td>
</tr>
</tbody>
</table>
Table A.15: Logical functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>all(x)</code></td>
<td>Returns 1 if all elements in x is nonzero, zero otherwise. For a matrix returns a row vector whose elements are 1 if the corresponding column of x contains all nonzero elements.</td>
</tr>
<tr>
<td><code>find(x)</code></td>
<td>Returns a vector of the indices of x corresponding to nonzero elements. For x a matrix x is first reshaped into a single column vector formed from the columns of the original x, then processed as before.</td>
</tr>
<tr>
<td><code>isnan(x)</code></td>
<td>Returns a matrix filled with 1’s where the elements of x are Nan and 0 otherwise.</td>
</tr>
<tr>
<td><code>finite(x)</code></td>
<td>Returns a matrix filled with 1’s where the elements of x are finite and 0 if they are infinite or Nan.</td>
</tr>
<tr>
<td><code>isempty(x)</code></td>
<td>Returns 1 if x is an empty matrix, 0 otherwise.</td>
</tr>
</tbody>
</table>
• The `find` function is particularly useful in vectorizing the evaluation of expressions such as (A.5)

• We can modify the code block on p. 47–48 and place it into an m-file as follows:

```matlab
% MATLAB script file eqn_A_5.m
% Vectorize equation (3-1)
% Work x > 4 case:
indices = find(x > 4);
y(indices) = 2*x(indices);
% Work x == 4 case:
indices = find(x == 4);
y(indices) = 0*x(indices);
% Work x < 4 case:
indices = find(x < 4);
y(indices) = -5*x(indices);
```

• **Usage of `eqn_A_5.m`:**

```matlab
>> x = -20:.1:20;
>> eqn_A_5
>> plot(x,y)
>> eqn_A_5
>> plot(x,y)
>> plot(x,x,x,y)
>> grid
>> title('Plot of Equation (A-5) using find()','fontsize',16)
>> ylabel('y and x','fontsize',14)
>> xlabel('x','fontsize',14)
```
Writing MATLAB Functions

- A user written functions are one of the main features of the most power features of the MATLAB environment
- A MATLAB function is very similar to the script files we have created in the past
 - A function is created using the m-file editor and saved in a file with the .m extension
 - A function type m-file is different than a script since the file must begin with the *keyword* function followed by

\[
\begin{align*}
 y &= \begin{cases}
 2x, & x > 4 \\
 0, & x = 4 \\
 -5x, & \text{otherwise}
 \end{cases}
\end{align*}
\]
a list of the values the function returns, the function name, and a list of the input arguments used by the function

```matlab
function [rvar1,rvar2,...] = my_fct(in1,in2,...)
% A short description of the function is typed to
% serve as on-line help for the function should
% the user type >> help my_fct
.
.
******Function Body Code is Here **********
.
% Somewhere in the function body we use
% in1, in2, ... to perform scalar, vector, or matrix
% calculations. The results are assigned to the
% return variables, rvar1, rvar2, etc.
%
• The official MATLAB definition of a function m-file is:

```bash
>> help function
FUNCTION Add new function.

New functions may be added to MATLAB's vocabulary if they are expressed in terms of other existing functions. The commands and functions that comprise the new function must be put in a file whose name defines the name of the new function, with a filename extension of '.m'. At the top of the file must be a line that contains the syntax definition for the new function. For example, the existence of a file on disk called stat.m with:

```matlab
function [mean,stdev] = stat(x)
n = length(x);
mean = sum(x) / n;
stdev = sqrt(sum((x - mean).^2)/n);
```

defines a new function called STAT that calculates the
mean and standard deviation of a vector. The variables within the body of the function are all local variables.

See SCRIPT for procedures that work globally on the work-space.

- A particular caution in defining your own functions is to make sure that your names do not conflict with any of MATLAB’s predefined functions.
- The m-file name must be the same as the function name, e.g., my_fct is saved as my_fct.m.
- All variables created and used within a function are local to that function, and will be destroyed when you are done using the function.
- Likewise the only MATLAB workspace variables that the function has knowledge of are those that are passed into it via the input parameter list, i.e., in1, in2, etc.

Example: A common function used in signals and systems problem solving is a function for generating a rectangular pulse

\[
\text{rect}(t) = \begin{cases}
1, & |t| \leq \frac{1}{2} \\
0, & \text{otherwise}
\end{cases}
\]

- We would like to create a new function \text{rect}(t) that allows to input a vector (a scalar version would trivial and not as useful) of time samples \(t \) and returns the corresponding func-
tional values rect(t)

function x = rect(t)
% RECT x = rect(t): A function that is defined
% to be 1 on [-0.5,0.5] and 0 otherwise.

% Initialize a vector with zeros in it that is
% the same length as the input vector t:
x = zeros(size(t));
% Create an index vector that holds the indices
% of t where abs(t) <= 0.5:
set1 = find(abs(t) <= 0.5);
% Use set1 to change the corresponding values
% of x from zero to one:
x(set1) = ones(size(set1));
% We are finished!

• Now we need to test the function and see if it performs as expected

 – Check the on-line help

 >> help rect

 RECT x = rect(t): A function that is defined
 to be 1 on [-0.5,0.5] and 0 otherwise.

 – Run a test vector into the function and plot the results

 >> t = -2:.01:2;
 >> x = rect(t);
 >> plot(t,x); grid;
 >> axis([-2 2 -.1 1.1])
 >> title('The rect Function in Action', ...
 'fontsize',18)
 >> ylabel('x(t)','fontsize',16)
Matrix Manipulation Functions

We know that a specialty of MATLAB is working with matrices.

Early on in this course we investigated the colon operator as a basic tool for matrix manipulation.

In this section additional functions for matrix manipulation are to be studied.

\[>> \text{xlabel('t','fontsize',16)} \]

The rect Function in Action

\[x(t) \]

\[t \]
Rotation

- A matrix can be rotated in the counter clockwise direction using the function `rot90`
 - `rot90(A)` rotates `A` by 90° counterclockwise
 - `rot90(A,n)` rotates `A` by `n \cdot 90°` counterclockwise

```matlab
>> A = [1 2; 3 4]
A =
     1     2
     3     4
>> [rot90(A) rot90(A,2)]
ans =
     2     4     4     3
     1     3     2     1
```

Flipping

- A matrix function that finds uses in signal processing is the ability to flip a matrix either from left-to-right, `fliplr(A)`, or from up-to-down, `flipud`

```matlab
>> A = [1 2; 3 4]
A =
     1     2
     3     4
>> [fliplr(A) flipud(A)]
ans =
     2     1     3     4
     4     3     1     2
```

Reshaping

- The $m \times n$ size of a matrix can be reshaped using `reshape(A,m,n)` so long as the product $m \cdot n$ is held
constant

>> B = [1 2 3 4; 5 6 7 8] % 2 x 4 = 8
B =
 1 2 3 4
 5 6 7 8
>> reshape(B,4,2) % 4 x 2 = 8, taken in columns from B
ans =
 1 3
 5 7
 2 4
 6 8
>> reshape(B,1,8) % 1 x 8 = 8, taken in columns from B
ans =
 1 5 2 6 3 7 4 8

Looping Structures

- The ability to repeat a set of statements with certain parameters changing is a feature of all modern programming languages.

- MATLAB provides the for loop and the while loop for performing such operations, with the caution that vectorizing algorithms is preferred since loops slow down program execution.

The for Loop

- The basic structure of a for loop is the following

  ```
  for index=start_value:stop_value
    % ...
    % Code to be executed repeatedly
  ```
% ...
end %This marks the end of the index for loop

• Often times we design a for loop to simply run over the index values of a vector we wish to operate on

Example: A for loop version of the rectangular pulse function

```matlab
function x = rect_loop(t)
% RECT x = rect_loop(t): A function that is defined to
% be 1 on [-0.5,0.5] and 0 otherwise. This imple-
% mentation uses a for loop which is inefficient.

% Initialize a vector with zeros in it that is
% the same length as the input vetor t:
x = zeros(size(t));
for k=1:length(t)
    if abs(t(k)) <= 0.5
        x(k) = 1;
    end
end
```

• Compare execution times for the two functions using tic and toc, making sure to run both functions at least twice so that the routines may be converted to fast binary form in the MATLAB workspace (the machine is a P120 running Win95)

```matlab
>> t = -10:.001:10; %Second pass results are below
>> length(t)
an = 20001
>> tic; x_vec = rect(t); toc;
elapsed_time = 0.0600000000000000 % Time in seconds
>> tic; x_loop = rect_loop(t); toc;
elapsed_time = 1.320000000000000 % Time in seconds

— **Note:** Once the two functions are ‘compiled’ to a fast
binary form, the vector version of \texttt{rect} runs $1.32/0.06 = 22$ times faster than the loop version!

- The \texttt{for} loop can be used in different ways depending upon how the loop indexing is defined
- In general loop control is accomplished using
  
  \begin{verbatim}
  for index=expression
  where expression may be a scalar, vector, or a matrix
  – scalar case: Here the loop executes just once with \texttt{index}
    equal to the scalar value
  – vector case: This is the most common, with the vector
    often taking on integer values or of the form
      \begin{verbatim}
      start_val:step_size:final_val
      \end{verbatim}
  – matrix case: This is very non traditional as far as high-level
    programming languages is concerned, but if used \texttt{index}
    becomes a column vector iterating over the columns of the
    expression matrix
  \end{verbatim}

  \textbf{The while Loop}

  - Another useful looping structure is the \texttt{while} loop, which
    loops \texttt{while} some condition is true
  - The \texttt{while} code block is of the form
    \begin{verbatim}
    while expression
    loop_statements
    end
    \end{verbatim}

  \textbf{Example:} Finding $N = 2^y \geq x > 0$, that is the nearest power of
  two is greater than or equal to some positive number.
function N = pow2up(x)
% POW2UP N = pow2up(x) finds the power of 2
% that is equal to or greater than x.
N = 1;
while x > N
    N = 2*N;
end

- Testing the function:
  >> [pow2up(1) pow2up(15) pow2up(56) pow2up(1026)]
  ans =
        1   16   64  2048

- In most high-level languages loops must be used in order to solve problems
- In writing MATLAB programs we strive to eliminate loops if at all possible
- Sometimes loops cannot be avoided